हिंदी

∫0π4sec2x(1+tanx)(2+tanx)dx = ? -

Advertisements
Advertisements

प्रश्न

`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?

विकल्प

  • log`(8/3)`

  • log`(4/3)`

  • `1/2 log (8/3)`

  • `1/2 log (4/3)`

MCQ

उत्तर

log`(4/3)`

Explanation:

Let I = `int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx

Put tan x = t ⇒ sec2x dx = dt

∴ I = `int_0^1 "dt"/((1 + "t")(2 + "t"))`

= `int_0^1 [(1/(1 + "t")) - (1/(2 + "t"))]`dt

`= [log |1 + "t"|]_0^1 - [log |2 + "t"|]_0^1`

= (log 2 - log 1) - (log 3 - log 2)

= log 2 - log`(3/2)`

∴ I = log `(4/3)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×