Advertisements
Advertisements
प्रश्न
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
विकल्प
log`(8/3)`
log`(4/3)`
`1/2 log (8/3)`
`1/2 log (4/3)`
MCQ
उत्तर
log`(4/3)`
Explanation:
Let I = `int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx
Put tan x = t ⇒ sec2x dx = dt
∴ I = `int_0^1 "dt"/((1 + "t")(2 + "t"))`
= `int_0^1 [(1/(1 + "t")) - (1/(2 + "t"))]`dt
`= [log |1 + "t"|]_0^1 - [log |2 + "t"|]_0^1`
= (log 2 - log 1) - (log 3 - log 2)
= log 2 - log`(3/2)`
∴ I = log `(4/3)`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?