हिंदी

Π∫0π4x.sec2x dx = ______. -

Advertisements
Advertisements

प्रश्न

`int_0^(π/4) x. sec^2 x  dx` = ______.

विकल्प

  • `π/4 + log sqrt(2)`

  • `π/4 - log sqrt(2)`

  • `1 + logsqrt(2)`

  • `1 - 1/2 log 2`

MCQ
रिक्त स्थान भरें

उत्तर

`int_0^(π/4) x. sec^2 x  dx` = `underlinebb(π/4 - log sqrt(2)`.

Explanation:

`int_0^(π/4) x sec^2 x  dx`

= `[x int sec^2 x  dx]_0^(π/4) - int_0^(π/4)[d/dx x int sec^2 x  dx]dx`

= `[x. tan x]_0^(π/4) - int_0^(π/4) [tan x]dx`

= `[x.tan x]_0^(π/4) - [log |sec x|]_0^(π/4)`

= `[π/4 - 0] - [log|sec  π/4| - log |sec 0|]`

= `π/4 - [log sqrt(2) - log 1]`

= `π/4 - log sqrt(2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×