Advertisements
Advertisements
प्रश्न
`(0.000729)^((-3)/4) xx (0.09)^((-3)/4)` = ______
विकल्प
`(10^3)/(3^3)`
`(10^5)/(3^5)`
`(10^2)/(3^2)`
`(10^6)/(3^6)`
उत्तर
`(10^6)/(3^6)`
Explanation;
Hint:
`(0.000729)^((-3)/4) xx (0.09)^((-3)/4) = (0.000729 xx 0.09)^((-3)/4)`
= `(729 xx 10^(-6) xx 9 xx 10^(-2))^((-3)/4)`
= `[(9 xx 729) xx 10^(-8)]^((-3)/4)`
= `(3^8 xx 10^(-8))^((-3)/4)`
= `3^(8 xx (-3)/4) xx 10^(-8 xx (-3)/4)`
= 3−6 × 106
= `(10^6)/(3^6)`
APPEARS IN
संबंधित प्रश्न
Simplify.
`9 sqrt 5 - 4 sqrt 5 + sqrt 125`
Simplify.
`7 sqrt 48 - sqrt 27 - sqrt 3`
Multiply and write the answer in the simplest form.
`3sqrt 12 xx 7 sqrt 15`
Simplify the following using addition and subtraction properties of surds:
`5root(3)(40) + 2root(3)(625) - 3root(3)(320)`
Simplify the following using multiplication and division properties of surds:
`sqrt(3) xx sqrt(5) xx sqrt(2)`
Simplify the following using multiplication and division properties of surds:
`root(3)(27) xx root(3)(8) xx root(3)(125)`
Simplify the following using multiplication and division properties of surds:
`[sqrt(225/729) - sqrt(25/144)] ÷ sqrt(16/81)`
If `sqrt(2)` = 1.414, `sqrt(3)` = 1.732, `sqrt(5)` = 2.236, `sqrt(10)` = 3.162, then find the values of the following correct to 3 places of decimals.
`sqrt(40) - sqrt(20)`
If `sqrt(2)` = 1.414, `sqrt(3)` = 1.732, `sqrt(5)` = 2.236, `sqrt(10)` = 3.162, then find the values of the following correct to 3 places of decimals.
`sqrt(300) + sqrt(90) - sqrt(8)`
Which of the following statement is false?