Advertisements
Advertisements
प्रश्न
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
विकल्प
–3
–2
2
0
MCQ
रिक्त स्थान भरें
उत्तर
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to 0.
Explanation:
Let I = `int_0^5 cos(π(x - [x/2]))dx`
Now, `cos(π(x - [x/2])) = cos(πx - π[x/2])`
`cos(πx - π[x/2]) = {{:(cos(πx - 0), 0 < x < 2),(cos(πx - π), 2 ≤ x < 4),(cos(πx - 2π), 4 ≤ x < 5):}`
∴ I = `int_0^2 cos(πx)dx + int_2^4 cos(πx - π)dx + int_4^5 cos(πx - 2π)dx`
⇒ I = `[(sin(πx))/π]_0^2 + [(sin(πx - π))/π]_2^4 + [(sin(πx - 2π))/π]_4^5`
⇒ I = `1/π (sin2π - sin0 + sin(4π - π)) - sin(2π - π) + sin(5π - 2π) - sin(4π - 2π)`
⇒ I = `1/π(0)`
⇒ I = 0
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?