Advertisements
Advertisements
प्रश्न
A 100 μF capacitor is charged with a 50 V source supply. Then source supply is removed and the capacitor is connected across an inductance, as a result of which 5A current flows through the inductance. Calculate the value of the inductance.
उत्तर
Here, C = 100 μF = 100 × 10−6 F = 10−4 F
V = 50 volt, i = 5A, L = ?
The energy stored in the electric field in the capacitor = `1/2"CV"^2`
The energy stored in the magnetic field in the inductor = `1/2"Li"^2`
As energy stored in inductor = energy stored in capacitor,
∴ `1/2"CV"^2 = 1/2"Li"^2`
∴ L = `"C" "V"^2/"i"^2`
∴ L = C`("V"/"i")^2`
`= 10^-4(50/5)^2 = 10^-4 xx 10^2 = 10^-2 "H"`
APPEARS IN
संबंधित प्रश्न
Obtain an expression for average power dissipated in a purely resistive A.C. circult.
A resistor of 500 Ω and an inductance of 0.5 H are in series with an AC source which is given by V = `100 sqrt2` sin (1000 t). The power factor of the combination is ______.
In a series LCR circuit, the phase difference between the voltage and the current is 45°. Then the power factor will be ______.
Answer in brief.
What is wattles current?
When an AC source is connected to an ideal inductor show that the average power supplied by the source over a complete cycle is zero.
Prove that an ideal capacitor in an AC circuit does not dissipate power
(a) An emf e = e0 sin ωt applied to a series L - C - R circuit derives a current I = I0sinωt in the circuit. Deduce the expression for the average power dissipated in the circuit.
(b) For circuits used for transporting electric power, a low power factor implies large power loss in transmission. Explain.
An AC source generating a voltage e = e0sinωt is connected to a capacitor of capacitance C. Find the expression for the current i flowing through it. Plot a graph of e and i versus ωt.
A light bulb is rated 100W for 220 V AC supply of 50 Hz. Calculate
- resistance of the bulb.
- the rms current through the bulb
An AC circuit consists of only an inductor of inductance 2 H. If the current is represented by a sine wave of amplitude 0.25 A and frequency 60 Hz, calculate the effective potential difference across the inductor. (π = 3.142)
A 25 μF capacitor, a 0.10 H inductor, and a 25Ω resistor are connected in series with an AC source whose emf is given by e = 310 sin 314 t (volt). What is the frequency, reactance, impedance, current, and phase angle of the circuit?
What is meant by wattles current?
Give any one definition of power factor.
L-C-R series circuit contains a resistance of 10 Ω and self-inductance 0.4 H connected in series with variable capacitor across 60 V and 50 Hz supply. The value of capacity at resonance will be π2 = 10.
In series 'LR' circuit and in series 'RC' circuit, same current is flowing. If the frequency of e.m.f. of a.c. is increased for both the circuits, the impedance will ____________.
An e.m.f. E = E0 sin `omega`t is applied to a circuit containing 'L' and 'R' in series. If XL = R, then the power dissipated in the circuit is ____________.
The voltage gain of a CE amplifier is 50. A sinusoidal ac of amplitude 10 mV is applied as a signal. The output of the amplifier will be ______.
Two unknown resistances are connected in two gaps of a meter-bridge. The null point is obtained at 40 cm from left end. A 30 Ω resistance is connected in series with the smaller of the two resistances, the null point shifts by 20 cm to the right end. The value of smaller resistance Ω is ______.
In series LCR circuit R = 18 Ω and impedance is 33 Ω An rms voltage 220V is applied across the circuit. The ture power consumed in AC circuit is ______.
What is the average value of alternating current over a complete cycle?
The power factor of LCR circuit is ______.
The effective capacitor between A and B in the following circuit is ______.
Explain the theory of an AC circuit with a resistor.
Where is the power dissipated in an alternating current circuit?