हिंदी

A 12.9 Ev Beam of Electronic is Used to Bombard Gaseous Hydrogen at Room Temperature. Upto Which Energy Level the Hydrogen Atoms Would Be Excited ? - Physics

Advertisements
Advertisements

प्रश्न

A 12.9 eV beam of electronic is used to bombard gaseous hydrogen at room temperature. Upto which energy level the hydrogen atoms would be excited ?
Calculate the wavelength of the first member of Paschen series and first member of Balmer series.

उत्तर

Energy of the electron in the nth state of an atom = \[- \frac{13 . 6 z^2}{n^2}\] eV
Here, z is the atomic number of the atom.
For hydrogen atom, z = 1

Energy required to excite an atom from initial state (ni) to final state (nf)  = \[- \frac{13 . 6}{{n_f}^2} + \frac{13 . 6}{{n_i}^2}\]eV
This energy must be equal to or less than the energy of the incident electron beam.

∴ \[- \frac{13 . 6}{{n_f}^2} + \frac{13 . 6}{{n_i}^2}\] 12.9
Energy of the electron in the ground state  = ∴  \[- \frac{13 . 6}{1^2} = - 13 . 6\]  eV

\[\therefore - \frac{13 . 6}{{n_f}^2} + 13 . 6 = 12 . 9\]

\[13 . 6 - 12 . 9 = \frac{13 . 6}{{n_f}^2}\]

\[{n_f}^2 = \frac{13 . 6}{0 . 7} = 19 . 43\]

\[ \Rightarrow n_f = 4 . 4\]

State cannot be a fraction number.
∴ \[n_f\] =4

Hence, the hydrogen atom would be excited up to 

\[4^{th}\] energy level.
Rydberg's formula for the spectrum of the hydrogen atom is given by:
\[\frac{1}{\lambda} = R\left[ \frac{1}{{n_1}^2} - \frac{1}{{n_2}^2} \right]\]
Here,
\[\lambda\]  is the wavelength. 
Rydberg's constant, R = \[1 . 097 \times {10}^7\] m-1
For the first member of the Paschen series:

\[n_1 = 3 \]

\[ n_2 = 4\]

\[\frac{1}{\lambda} = 1 . 097 \times {10}^7 \left[ \frac{1}{3^2} - \frac{1}{4^2} \right]\]

\[\lambda = 18761\]Å

For the first member of Balmer series:

\[n_1 = 2 \]

\[ n_2 = 3\]

\[\frac{1}{\lambda} = 1 . 097 \times {10}^7 \left[ \frac{1}{2^2} - \frac{1}{3^2} \right]\]

\[\lambda = 6563\]Å

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Delhi Set 2

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The ground state energy of hydrogen atom is −13.6 eV. What are the kinetic and potential energies of the electron in this state?


The total energy of an electron in the first excited state of the hydrogen atom is about −3.4 eV.

What is the potential energy of the electron in this state?


What are means by pair annihilation? Write a balanced equation for the same.


A 12.3 eV electron beam is used to bombard gaseous hydrogen at room temperature. Upto which energy level the hydrogen atoms would be excited?
Calculate the wavelengths of the second member of Lyman series and second member of Balmer series.


The energy levels of an atom are as shown below. Which of them will result in the transition of a photon of wavelength 275 nm?


A Carnot engine absorbs 1000 J of heat energy from a reservoir at 127°C and rejects 600 J of heat energy during each cycle. The efficiency of the engine and temperature of the sink will be:


Energy of an electron at infinity from nucleus is ______.


Energy levels A, B, C of acertain atom corresponding to increasing value of energy, i.e., EA< E8 < Ee. If λ1, λ2 and λ3 are the wavelength of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct?


Two H atoms in the ground state collide inelastically. The maximum amount by which their combined kinetic energy is reduced is ______.


Radiation coming from transitions n = 2 to n = 1 of hydrogen atoms fall on He+ ions in n = 1 and n = 2 states. The possible transition of helium ions as they absorb energy from the radiation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×