Advertisements
Advertisements
प्रश्न
`a/((ax-1))+b/((bx-1))=(a+b),x≠1/a,1/b`
उत्तर
`a/((ax-1))+b/((bx-1))=(a+b) `
⇒`[a/((ax-1))-b]+[b/((bx-1))-a]=0`
⇒`(a-b(ax-1))/(ax-1)+(b-a(bx-1))/(bx-1)=0`
⇒`(a-abx+b)/(ax-1+a)-(abx+b)/(bx-1)=0`
⇒`(a-abx+b)[1/(ax-1)+1/(bx-1)]=0`
⇒`(a-abx+b)[((bx-1)+(ax-1))/(((ax-1))(bx-1))]=0`
⇒`(a-abx+b)[[(a+b)x-2)/((ax-1)(bx-1))]=0`
⇒`(a-abx+b)[(a+b)x-2]=0`
⇒`a-abx+b=0 or (a+b)x-2=0`
⇒`x=(a+b)/(ab) or x=2/(a+b)`
Hence, the roots of the equation are `(a+b)/(ab)` and` 2/(a+b)`
APPEARS IN
संबंधित प्रश्न
Solve the following equation and calculate the answer correct to two decimal places:
x2 – 5x – 10 = 0.
In the following, determine whether the given values are solutions of the given equation or not:
2x2 - x + 9 = x2 + 4x + 3, x = 2, x =3
Solve : x² – (a + b)x + ab = 0
Solve `a^2x^2 - b^2 = 0`
Solve:
`2(x^2 + 1/x^2) - (x + 1/x) = 11`
An Aero plane travelled a distance of 400 km at an average speed of x km/hr. On the return journey, the speed was increased by 40 km/hr. Write down an expression for the time taken for:
(1) the onward journey;
(2) the return journey.
If the return journey took 30 minutes less than the onward journey, write down an equation in x and find its value.
`2/x^2-5/x+2=0`
`3((3x-1)/(2x+3))-2((2x+3)/(3x-1))=5,x≠1/3,-3/2`
Find the value of p for which the roots of the equation px (x − 2) + 6 = 0, are equal.
If x2 – 4x – 5 = 0, values of x correct to two decimal places are ______.