Advertisements
Advertisements
प्रश्न
A body is thrown from the surface of the earth velocity v `"m"/"s"`. The maximum height above the earth's surface upto which it will reach is ____________.
(R = radius of earth, g = acceleration due to gravity)
विकल्प
`("vR")/(2"gR" - "v")`
`(2"gR")/("v"^2("R" - 1))`
`("vR"^2)/("gR" - "v")`
`("v"^2"R")/(2"gR" - "v"^2)`
उत्तर
A body is thrown from the surface of the earth velocity v `"m"/"s"`. The maximum height above the earth's surface upto which it will reach is `underline(("v"^2"R")/(2"gR" - "v"^2))`.
Explanation:
At maximum height, the velocity of body becomes zero. Let maximum height be h.
Applying the principle of conservation of energy, we get
`1/2 "mv"^2 - ("GMm")/"R" = 1/2"m"(0)^2 - ("GMm")/(("R" + "h"))` .......[where, m = mass of body and M = mass of earth.]
`1/2 "mv"^2 = "GMm" (1/"R" - 1/("R" + "h"))`
`"h"/("R"("R" + "h")) = "v"^2/(2"GM")`
`"h"/("R" + "h") = ("v"^2"R")/(2"GM") = ("v"^2"R")/(2"gR"^2)` ..........(∵ GM = gR2)
`("R" + "h")/"h" = (2"gR")/"v"^2`
`"R"/"h" + 1 = (2"gR")/"v"^2`
`"R"/"h" = (2"gR")/"v"^2 - 1 = (2"gR" - "v"^2)/"v"^2`
or h = `("v"^2"R")/(2"gR" - "v"^2)`