Advertisements
Advertisements
प्रश्न
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in the majority?
उत्तर
Number of women = 10
Number of men = 8
Number of persons in the team = 10
A committee of 10 persons consisting of at least 5 women can be formed as follows:
(I) 5 women and 5 men or
(II) 6 women and 4 men or
(III) 7 women and 3 man or
(IV) 8 women and 2 man or
(V) 9 women and 1 man or
(VI) 10 women
The number of ways of forming the committee:
(I) 5 women and 5 men
= `""^10"C"_5 xx ""^8"C"_5`
= `(10 xx 9 xx 8 xx 7 xx 6 xx 5 xx 4)/(5 xx 4 xx 3 xx 2 xx 1) xx (8 xx 7 xx 6)/(3 xx 2 xx 1)`
= (2 × 9 × 2 × 7) × (8 × 7)
= 14112
(II) 6 women and 4 men
= `""^10"C"_6 xx ""^8"C"_4`
= `(10 xx 9 xx 8 xx 7)/(4 xx 3 xx 2 xx 1) xx (8 xx 7 xx 6 xx 5)/(4 xx 3 xx 2 xx 1)`
= (5 × 2 × 3 × 7) × (2 × 7 × 5)
= 14700
(III) 7 women and 3 men
= `""^10"C"_7 xx ""^8"C"_3`
= `(10 xx 9 xx 8)/(3 xx 2 xx 1) xx (8 xx 7 xx 6)/(3 xx 2 xx 1)`
= (10 × 12) × (8 × 7)
= 6720
(IV) 8 women and 2 men
= `""^10"C"_8 xx ""^8"C"_2`
= `(10 xx 9)/(2 xx 1) xx (8 xx 7)/(2 xx 1)`
= (5 × 9) × (4 × 7)
= 1260
(V) 9 women and 1 men
= `""^10"C"_9 xx ""^8"C"_1`
= `10/1 xx 8/1`
= 80
(VI) 10 women
= `""^10"C"_10`
= 1
Hence, the number of ways of forming the required committee
= 14112 + 14700 + 6720 + 1260 + 80 + 1
= 36873
For men to be in majority, the committee should have 6 or more men.
Following are the possibilities:
(I) 6 men and 4 women or
(II) 7 men and 3 women or
(III) 8 men and 2 women
The number of ways of forming the committee:
(I) 6 men and 4 women
= `""^8"C"_6 xx ""^10"C"_4`
= `(8 xx 7)/(1 xx 2) xx (10 xx9 xx 8 xx 7)/(1 xx 2 xx 3 xx 4)`
= 5880
(II) 7 men and 3 Women
= `""^8"C"_7 xx ""^10"C"_3`
= `8 xx (10 xx 9 xx 8)/(1 xx 2 xx 3)`
= 960
(III) 8 men and 2 women
= `""^8"C"_8 xx ""^10"C"_2`
= `1 xx (10 xx 9)/(1 xx 2)`
= 45
Hence, number of ways of forming the required committee
= 5880 + 960 + 45
= 6885
APPEARS IN
संबंधित प्रश्न
Find the value of `""^80"C"_2`
Find the value of `""^15"C"_4 + ""^15"C"_5`
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 15
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 12
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two questions from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Five students are selected from 11. How many ways can these students be selected if two specified students are selected?
If 20 points are marked on a circle, how many chords can be drawn?
Find n if 21C6n = `""^21"C"_(("n"^2 + 5))`
Find the value of `sum_("r" = 1)^4 ""^((21 - "r"))"C"_4`
Find the differences between the greatest values in the following:
13Cr and 8Cr
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in majority?
Select the correct answer from the given alternatives.
The number of ways in which 5 male and 2 female members of a committee can be seated around a round table so that the two females are not seated together is
Answer the following:
30 objects are to be divided in three groups containing 7, 10, 13 objects. Find the number of distinct ways for doing so.
A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Answer the following:
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms formed
If `1/(8!) + 1/(7!) = x/(9!)`, than x is equal to ______.
If vertices of a parallelogram are respectively (2, 2), (3, 2), (4, 4), and (3, 4), then the angle between diagonals is ______
What is the probability of getting a “FULL HOUSE” in five cards drawn in a poker game from a standard pack of 52-cards?
[A FULL HOUSE consists of 3 cards of the same kind (eg, 3 Kings) and 2 cards of another kind (eg, 2 Aces)]
Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is ______.