Advertisements
Advertisements
प्रश्न
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
विकल्प
2.00
3.00
4.00
5.00
MCQ
रिक्त स्थान भरें
उत्तर
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to 5.00.
Explanation:
`arg((z - 1)/(z + 1)) = π/2`
i.e. z is moving on a semicircle as shown
If `arg((z^3 - 1)/(z^3 + 1)) = π/2`
⇒ z3 = eiθ, 0 < θ < π
⇒ z = `e^(i((θ + 2kπ)/3)`, k = –1, 0, 1
⇒ z = `e^((iθ)/3), e^(i((θ + 2π)/3)), e^(i((θ - 2π)/3)`, 0 < θ < π
Whose locus is shown below
∴ Locus of z is the union of 3 are as shown above
⇒ Probability = `2/3`
⇒ m + n = 5
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?