Advertisements
Advertisements
प्रश्न
A lift of mass 'm' is connected to a rope which is moving upward with maximum acceleration 'a'. For maximum safe stress, the elastic limit of the rope is 'T'. The minimum diameter of the rope is ______.
(g = gravitational acceleration)
विकल्प
`[(2"m"("g"+"a"))/(pi"T")]^(1/2)`
`[(4"m"("g"+"a"))/(pi"T")]^(1/2)`
`[("m"("g"+"a"))/(pi"T")]^(1/2)`
`[("m"("g"+"a"))/(2pi"T")]^(1/2)`
उत्तर
A lift of mass 'm' is connected to a rope which is moving upward with maximum acceleration 'a'. For maximum safe stress, the elastic limit of the rope is 'T'. The minimum diameter of the rope is `underlinebb([(4"m"("g"+"a"))/(pi"T")]^(1/2))`.
(g = gravitational acceleration)
Explanation:
Maximum tension in the rope = m (g + a)
Stress rn the rope, T = `("m"("g"+"a"))/(pi"r"^2)`
∴ T = `("m"("g"+"a"))/(pi"r"^2)=("m"("g"+"a"))/(pi("d"/2)^2)`
or, T = `(4"m"("g"+"a"))/(pi"d"^2)`
⇒ d2 = `(4"m"("g"+"a"))/(pi"T")`
∴ d = `[(4"m"("g"+"a"))/(pi"T")]^(1/2)`