Advertisements
Advertisements
प्रश्न
A monopolist has a demand curve x = 106 – 2p and average cost curve AC = 5 + `x/50`, where p is the price per unit output and x is the number of units of output. If the total revenue is R = px, determine the most profitable output and the maximum profit.
उत्तर
x = 106 – 2p
(or) 2p = 106 – x
p = `1/2`(106 – x)
Revenue, R = px
= `1/2`(106 – x) x
= 53x – `x^2/2`
Average Cost, AC = `5 + x/50`
Cost C = (AC)x
= `(5 + x/50)x`
= `5x + x^2/50`
Profit (P) = Revenue – Cost
`"dP"/"dx" = 48 - (13(2x))/25`
`"dP"/"dx"` = 0 gives
`48 - (13(2x))/25` = 0
`48 = (13 xx 2x)/25`
x = `(48 xx 25)/(13 xx 2)`= 46.1538 = 46 (approximately)
Also `("d"^2"P")/"dx"^2 = 0 - (13)^2/25`, negative since `("d"^2"P")/"dx"^2` is negative, profit is maximum at x = 46 units.
Profit = `48x – 13/25` x2
When x = 46,
Profit = `48 × 46 - 13/25` × 46 × 46
`= 2208 - 27508/25`
= 2208 – 1100.32
= ₹ 1107.68
APPEARS IN
संबंधित प्रश्न
The expenditure Ec of a person with income I is given by Ec = (0.000035) I2 + (0.045) I. Find marginal propensity to consume (MPC) and marginal propensity to save (MPS) when I = 5000. Also find A (average) PC and A (average)
PS.
A firm wants to maximize its profit. The total cost function is C = 370Q + 550 and revenue is R = 730Q-3Q2. Find the output for which profit is maximum and also find the profit amount at this output.
Evaluate : `int_1^2 1/((x+1)(x+3)) dx`
In a firm the cost function for output x is given as C = `"x"^3/3 - 20"x"^2 + 70 "x"`. Find the 3 output for which marginal cost (Cm) is minimum.
Examine the function f(x) = `x + 25/x ` for maxima and minima
A manufacturer can sell x items at a price of ₹ (280 - x) each .The cost of producing items is ₹ (x2 + 40x + 35) Find the number of items to be sold so that the manufacturer can make maximum profit.
The average cost function associated with producing and marketing x units of an item is given by AC = 2x – 11 + `50/x`. Find the range of values of the output x, for which AC is increasing.
A television manufacturer finds that the total cost for the production and marketing of x number of television sets is C(x) = 300x2 + 4200x + 13500. If each product is sold for ₹ 8,400. show that the profit of the company is increasing.
Find the local minimum and local maximum of y = 2x3 – 3x2 – 36x + 10.
The total cost function y for x units is given by y = `4x((x+2)/(x+1)) + 6`. Prove that marginal cost [MC] decreases as x increases.