Advertisements
Advertisements
प्रश्न
A plastic box 1.5 m long, 1.25 m wide and 65 cm deep, is to be made. It is to be open at the top. Ignoring the thickness of the plastic sheet, determine:
(i) The area of the sheet required for making the box.
(ii) The cost of sheet for it, if a sheet measuring 1 m2 costs Rs 20.
उत्तर
It is given that, length (l) of box = 1.5 m
Breadth (b) of box = 1.25 m
Depth (h) of box = 0.65 m
(i) Box is to be open at top.
Area of sheet required
= 2lh + 2bh + lb
= [2 × 1.5 × 0.65 + 2 × 1.25 × 0.65 + 1.5 × 1.25] m2
= (1.95 + 1.625 + 1.875) m2 = 5.45 m2
(ii) Cost of sheet per m2 area = Rs 20
Cost of sheet of 5.45 m2 area = Rs (5.45 × 20)
= Rs 109
APPEARS IN
संबंधित प्रश्न
Three equal cubes are placed adjacently in a row. Find the ratio of total surface area of the new cuboid to that of the sum of the surface areas of the three cubes.
The dimensions of a rectangular box are in the ratio of 2 : 3 : 4 and the difference between the cost ofcovering it with sheet of paper at the rates of Rs. 8 and Rs. 9.50 per m2 is Rs.1248. Find the dimensions of the box.
Ravish wanted to make a temporary shelter for his car by making a box-like structure with tarpaulin that covers all the four sides and the top of the car ( with the front face as a flap which can be rolled up). Assuming that the stitching margins are very small, and therefore negligible, how much tarpaulin would be required to make the shelter of height 2.5 m with
base dimensions 4 m × 3m?
Find the volume of a cuboid whose length = 15 cm, breadth = 2.5 dm, height = 8 cm.
Find the number of cuboidal boxes measuring 2 cm by 3 cm by 10 cm which can be stored in a carton whose dimensions are 40 cm, 36 cm and 24 cm.
Three cubes of each side 4 cm are joined end to end. Find the surface area of the resulting cuboid.
A solid cube of edge 14 cm is melted down and recast into smaller and equal cubes each of the edge 2 cm; find the number of smaller cubes obtained.
A tank 30 m long, 24 m wide, and 4.5 m deep is to be made. It is open from the top. Find the cost of iron-sheet required, at the rate of ₹ 65 per m2, to make the tank.
Find the capacity of a cylindrical container with an internal diameter of 28 cm and a height of 20 cm.
The dimensions of a cuboidal box are 6 m × 400 cm × 1.5 m. Find the cost of painting its entire outer surface at the rate of ₹ 22 per m2.