हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Platinum Resistance Thermometer Reads 0° When Its Resistance is 80 ω and 100° When Its Resistance is 90 ω. - Physics

Advertisements
Advertisements

प्रश्न

A platinum resistance thermometer reads 0° when its resistance is 80 Ω and 100° when its resistance is 90 Ω.
Find the temperature at the platinum scale at which the resistance is 86 Ω.

संक्षेप में उत्तर
रिक्त स्थान भरें

उत्तर

Given:
Resistance at 0oC, R0 = 80

\[\Omega\]

Resistance at 100oC, R100 = 90 

\[\Omega\]

Let be the temperature at which the resistance (Rt) is 86 

\[\Omega\]

\[t = \frac{R_t - R_0}{R_{100} - R_0} \times 100\]

\[ \Rightarrow t = \frac{86 - 80}{90 - 80} \times 100\]

\[ \Rightarrow t = \frac{6}{10} \times 100\]

\[ \Rightarrow t = 60°\]

Therefore, the resistance is 86

\[\Omega\] at 60°C

shaalaa.com
Measurement of Temperature
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Heat and Temperature - Exercises [पृष्ठ १२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 1 Heat and Temperature
Exercises | Q 8 | पृष्ठ १२

संबंधित प्रश्न

Two absolute scales A and B have triple points of water defined to be 200 A and 350 B. What is the relation between TA and TB?


The electrical resistance in ohms of a certain thermometer varies with temperature according to the approximate law:

Ro [1 + α (– To)]

The resistance is 101.6 Ω at the triple-point of water 273.16 K, and 165.5 Ω at the normal melting point of lead (600.5 K). What is the temperature when the resistance is 123.4 Ω?


Answer the following:

The triple-point of water is a standard fixed point in modern thermometry. Why? What is wrong in taking the melting point of ice and the boiling point of water as standard fixed points (as was originally done in the Celsius scale)?


Two ideal gas thermometers Aand Buse oxygen and hydrogen respectively. The following observations are made:

Temperature Pressure thermometer A Pressure thermometer B
Triple-point of water 1.250 × 105 Pa 0.200 × 105 Pa
Normal melting point of sulphur 1.797 × 105 Pa 0.287 × 105 Pa

(a) What is the absolute temperature of the normal melting point of sulphur as read by thermometers Aand B?

(b) What do you think is the reason behind the slight difference in answers of thermometers Aand B? (The thermometers are not faulty). What further procedure is needed in the experiment to reduce the discrepancy between the two readings?


A brass wire 1.8 m long at 27 °C is held taut with little tension between two rigid supports. If the wire is cooled to a temperature of –39 °C, what is the tension developed in the wire, if its diameter is 2.0 mm? Co-efficient of linear expansion of brass = 2.0 × 10–5 K–1; Young’s modulus of brass = 0.91 × 1011 Pa.


A constant-volume thermometer registers a pressure of 1.500 × 104 Pa at the triple point of water and a pressure of 2.050 × 10Pa at the normal boiling point. What is the temperature at the normal boiling point?


A piece of iron of mass 100 g is kept inside a furnace for a long time and then put in a calorimeter of water equivalent 10 g containing 240 g of water at 20°C. The mixture attains and equilibrium temperature of 60°C. Find the temperature of the furnace. Specific heat capacity of iron = 470 J kg−1 °C−1.


Four 2 cm × 2 cm × 2 cm cubes of ice are taken out from a refrigerator and are put in 200 ml of a drink at 10°C. (a) Find the temperature of the drink when thermal equilibrium is attained in it. (b) If the ice cubes do not melt completely, find the amount melted. Assume that no heat is lost to the outside of the drink and that the container has negligible heat capacity. Density of ice = 900 kg m−3, density of the drink = 1000 kg m−3, specific heat capacity of the drink = 4200 J kg−1 K−1, latent heat of fusion of ice = 3.4 × 105 J kg−1.


A metre scale made of steel reads accurately at 20°C. In a sensitive experiment, distances accurate up to 0.055 mm in 1 m are required. Find the range of temperature in which the experiment can be performed with this metre scale. Coefficient of linear expansion of steel  = 11 × 10–6 °C–1.


An aluminium can of cylindrical shape contains 500 cm3 of water. The area of the inner cross section of the can is 125 cm2. All measurements refer to 10°C.
Find the rise in the water level if the temperature increases to 80°C. The coefficient of linear expansion of aluminium is 23 × 10–6 °C–1 and the average coefficient of the volume expansion of water is 3.2 × 10–4 °C–1.


A cube of iron (density = 8000 kg m−3, specific heat capacity = 470 J kg−1 K−1) is heated to a high temperature and is placed on a large block of ice at 0°C. The cube melts the ice below it, displaces the water and sinks. In the final equilibrium position, its upper surface just goes inside the ice. Calculate the initial temperature of the cube. Neglect any loss of heat outside the ice and the cube. The density of ice = 900 kg m−3 and the latent heat of fusion of ice = 3.36 × 105 J kg−1.


A steel rod is rigidly clamped at its two ends. The rod is under zero tension at 20°C. If the temperature rises to 100°C, what force will the rod exert on one of the clamps? Area of cross-section of the rod is 2.00 mm2. Coefficient of linear expansion of steel is 12.0 × 10–6 °C–1 and Young's modulus of steel is 2.00 × 1011 Nm–2.


A copper cube of mass 200 g slides down on a rough inclined plane of inclination 37° at a constant speed. Assume that any loss in mechanical energy goes into the copper block as thermal energy. Find the increase in the temperature of the block as it slides down through 60 cm. Specific heat capacity of copper = 420 J kg−1 K−1.


A metal block of density 600 kg m−3 and mass 1.2 kg is suspended through a spring of spring constant 200 N m−1. The spring-block system is dipped in water kept in a vessel. The water has a mass of 260 g and the bloc is at a height 40 cm above the bottom of the vessel. If the support of the spring is broken, what will be the rise in the temperature of the water. Specific heat capacity of the block is 250 J kg−3 K−1 and that of water is 4200 J kg−1 K−1. Heat capacities of the vessel and the spring are negligible.


A circular disc made of iron is rotated about its axis at a constant velocity ω. Calculate the percentage change in the linear speed of a particle of the rim as the disc is slowly heated from 20°C to 50°C, keeping the angular velocity constant. Coefficient of linear expansion of iron = 1.2 × 10–5 °C–1.


Answer the following question.

How a thermometer is calibrated?


At what temperature, the reading of a fahrenheit thermometer will be three times that of celsius thermometer?


If the temperature on the Fahrenheit scale is 140 °F, then the same temperature on the Kelvin scale will be:  


Calculate the temperature which has same numeral value on celsius and Fahrenheit scale.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×