हिंदी

A simple pendulum of length 'L' is suspended from a roof of a trolley. A trolley moves in horizontal direction with an acceleration 'a'. What would be the period of oscillation of a simple pendulum? -

Advertisements
Advertisements

प्रश्न

A simple pendulum of length 'L' is suspended from a roof of a trolley. A trolley moves in horizontal direction with an acceleration 'a'. What would be the period of oscillation of a simple pendulum?

(g is acceleration due to gravity)

विकल्प

  • `2pisqrt("L"/(g+a))`

  • `2pisqrt"L"(a^2+g^2)^(1/4)`

  • `2pisqrt("L"/(g-a))`

  • `2pisqrt"L"(a^2+g^2)^(1/2)`

MCQ

उत्तर

`2pisqrt"L"(a^2+g^2)^(1/4)`

Explanation:

`T=2pisqrt(L/g)`

where g is the effective value of acceleration due to gravity. When the trolley has acceleration 'a' in horizontal direction, the effective value of acceleration is the resultant of a and g which 1 are at right angles to each other. Hence effective acceleration is `sqrt(a^2+g^2)` or `(a^2+g^2)^(1/2)`

`thereforeT=2pisqrt(L/(a^2+g^2)^(1/2))=(2pisqrtL)/(sqrt((a^2+g^2)^(1/2)))`

`=2pisqrtL(a^2+g^2)^(-1/4)`

shaalaa.com
Acceleration (a), Velocity (v) and Displacement (x) of S.H.M.
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×