हिंदी

A Two-digit Number is Such that the Product of Its Digits is 18. When 63 is Subtracted from the Number, the Digits Interchange Their Places. Find the Number. - Mathematics

Advertisements
Advertisements

प्रश्न

A two-digit number is such that the product of its digits is 18. When 63 is subtracted from the number, the digits interchange their places. Find the number.

उत्तर

Let the tens and the units digits of the required number be x and y, respectively.
Then, we have:
xy = 18                     …….(i)
Required number = (10x + y)
Number obtained on reversing its digits = (10y + x)
∴(10x + y) - 63 = 10y + x
⇒9x – 9y = 63
⇒ 9(x – y) = 63
⇒ x – y = 7                       ……..(ii)
We know:
`(x + y)^2 – (x – y)^2 = 4xy`
`⇒ (x + y) = ± sqrt((x−y)2+4xy)`
`⇒ (x + y) = ± sqrt(49+4 ×18)`
                `= ± sqrt(49+72)`
                 `= ± sqrt(121) = ±11`
⇒ x + y = 11          ……..(iii)    (∵ x and y cannot be negative)
On adding (ii) and (iii), we get:

2x = 7 +11 = 18
⇒x = 9
On substituting x = 9in (ii) we get
9 – y = 7
⇒ y = (9 – 7) = 2
∴ Number = (10x + y) = 10 × 9 + 2 = 90 + 2 = 92
Hence, the required number is 92.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Equations in two variables - Exercises 4

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 3 Linear Equations in two variables
Exercises 4 | Q 48

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×