Advertisements
Advertisements
प्रश्न
A uniform cylinder of mass M and radius R is to be pulled over a step of height a (a < R) by applying a force F at its centre 'O' perpendicular to the plane through the axes of the cylinder on the edge of the step (see figure). The minimum value of F required is:
विकल्प
`"Mg"sqrt(1-(("R"-"a")/"R")^2)`
`"Mg"sqrt(1-"a"^2/"R"^2)`
`"Mg"sqrt("R"/("R"-"a")-1`
Mg `"a"/"R"`
MCQ
उत्तर
`bb("Mg"sqrt(1-(("R"-"a")/"R")^2))`
Explanation:
Given: Mass of cylinder is M, radius of cylinder is R, height of the step is a(a < R).
To find: F, the minimum value of force required to pull the cylinder over the step.
From the above figure, the minimum force required to pull the cylinder over step a is :
F > Mg cos θ
F > Mg `sqrt("R"^2-("R"-"a")^2/"R")`
F > Mg `sqrt(1-(("R"-"a")/"R")^2)`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?