Advertisements
Advertisements
प्रश्न
A violin string vibrates with fundamental frequency of 440Hz. What are the frequencies of the first and second overtones?
उत्तर
Data: n = 440 Hz
The first overtone, n1 = 2n = 2 x 440 = 880 Hz
The second overtone, n2 = 3n = 3 x 440 = 1320 Hz
संबंधित प्रश्न
Answer in brief:
What are harmonics and overtones?
A pipe closed at one end can produce overtones at frequencies 640 Hz, 896 Hz, and 1152 Hz. Calculate the fundamental frequency.
Find the fundamental, first overtone, and second overtone frequencies of a pipe, open at both the ends, of length 25 cm if the speed of sound in air is 330 m/s.
A pipe open at both the ends has a fundamental frequency of 600 Hz. The first overtone of a pipe closed at one end has the same frequency as the first overtone of the open pipe. How long are the two pipes?
(Given: v = 330 m/s)
The equation of a simple harmonic progressive wave is given by, y = 5cosπ`[200t - x/150]`, where x and y are in cm and ‘t’ is in second. Then the velocity of the wave is ______.
What are harmonics?
What are overtones?
At the poles, a stretched wire of a given length vibrates in unison with a tuning fork. At the equator, for same setting to produce resonance with same fork. the vibrating length of wire ______.
The fundamental frequency of a closed pipe is 400 Hz. If `1/3`rd pipe !s tilled with water, then the 3 frequency of 2nd harmonic of the pipe will be (neglect and correction).
In a fundamental mode the time required for the sound wave to reach upto the closed end of a pipe filled with air is 't' second. The frequency of vibration of air column is ________.
A tube closed at one end and containing air produces fundamental note of frequency 256 Hz. If the tube is open at both ends, the fundamental frequency will be ____________.
An organ pipe has a fundamental frequency of 120 Hz. Its fourth overtone is 600 Hz. Find the type of the pipe.
If length of a closed organ pipe is 60 cm and velocity of sound is 360 m/s, then the frequency of 1st overtone is ____________.
A thin wire of 99 cm is fixed at both ends as shown in figure. The wire is kept under a tension and is divided into three segments of lengths l1, l2, and l3 as shown in figure. When the wire is made to vibrate respectively with their fundamental frequencies in the ratio 1:2:3. Then the lengths l1, l2, and l3 of the segments respectively are (in cm).
A uniform rope of mass 6 kg hangs vertically from a rigid support. A block of mass 2 kg is attached to the free end of the rope. A transverse pulse of wavelength 0.06 m is produced at the lower end of the rope. The wavelength of the pulse, when it reaches the top is ______. (in m)
An open pipe of certain length produces fundamental frequency f1. A closed pipe of some other length produces fundamental .frequency f2. When the two are joined to form a longer close tube, its fundamental frequency will be ____________.
The fundamental frequency of sonometer wire increases by 9 Hz, if its tension is increased by 69%, keeping the length constant. The frequency of the wire is ______.
'n' number of waves are produced on a string in 0.5 seconds. Now the tension in a string is doubled (Keeping radius constant). The number of waves produced in 0.5 seconds for the same harmonic will be ______
If the length and diameter of a wire are decreased, then for the same tension the natural frequency of stretched wire will ______.
The equation of stationary wave on a string clamped at both ends and vibrating in the third harmonic is given by y = 0.5 sin (0.314 x) cos (600 πt), where x and y are in cm and t in second. The length of the vibrating string is ______
(π = 3.14)
A pipe closed at one end has length 83 cm. The number of possible natural oscillations of air column whose frequencies lie below 1000 Hz are ______. (velocity of sound in air = 332 m/s)
Two uniform wires of the same material are vibrating under the same tension. If the first overtone of the first wire is equal to the second overtone of the second wire and radius of the first wire is the twice the radius of the second wire, then the ratio of the lengths of the first wire to second wire is ______.
The fundamental frequency of an air column is a pipe closed at one end is 100 Hz. If the same pipe is open at both the ends, the frequencies produced in Hz are ______.
A stretched string 0.7 m long and fixed at its ends vibrates in the second overtone of frequency 300 Hz. Find the speed of the transverse wave on the string.
Two organ pipes closed at one end have the same diameters but different lengths. Show that the end correction at each end is e = `(n_1l_1 - n_2l_2)/(n_2 - n_1)`, where the symbols have their usual meanings. Take `γ = 5/3`.
Prove that for pipe closed at one end, the end correction is `e = (n_2l_2-n_1l_1)/(n_1-n_2)`
A sonometer wire is subjected to a certain tension. If the tension is increased four times and the length of wire is reduced to half the original value, how is frequency of vibrations altered?