हिंदी

A Wire of Length L Is Bent in the Form of an Equilateral Triangle and Carries an Electric Current I. Find the Magnetic Field B At the Centre. -

Advertisements
Advertisements

प्रश्न

A wire of length l is bent in the form of an equilateral triangle and carries an electric current i. Find the magnetic field B at the centre.

टिप्पणी लिखिए

उत्तर

Let ABC be the equilateral triangle with side l/3 and centre M.   

\[\text{ In } ∆ AOB, \]
\[AO = \sqrt{\left( \frac{l}{3} \right)^2 - \left( \frac{I}{6} \right)^2}\]
\[ = l\sqrt{\frac{1}{9} - \frac{1}{36}} = l\sqrt{\frac{4 - 1}{36}} = l\sqrt{\frac{1}{12}}\]
\[ \therefore \text{ MO }= \frac{1}{3} \times l\sqrt{\frac{1}{12}} = \frac{l}{6\sqrt{3}}\]

The angles made by points B and C with centre M are  \[\theta_1 = 60^\circ \text{ and } \theta_2 = 60^\circ \]

Separation of the point from the wire, d = MO = \[\frac{l}{6\sqrt{3}}\]
Thus, the magnetic field due to current in wire BC is given by
\[B = \frac{\mu_0 i}{4\pi d}(\sin \theta_1 + \sin \theta_2 )\]
\[ \Rightarrow B = \frac{\mu_0 i}{4\pi\frac{l}{6\sqrt{3}}}(\sin 60 + \sin 60)\]
\[\Rightarrow B = \frac{\mu_0 i}{4\pi l}6\sqrt{3} \times \sqrt{3}\]
Now,
Net magnetic field at M = Magnetic field due to wire BC + Magnetic field due to wire CA + Magnetic field due to wire AB
Since all wires are the same  \[B_{net} = 3B\]
 
\[= \frac{27 \mu_0 i}{\pi l}\]
It is perpendicular to the plane in outward direction if the current is anticlockwise and perpendicular to the plane in inward direction if the current is clockwise. 
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×