हिंदी

□ABCD is a rectangle. Taking AD as a diameter, a semicircle AXD is drawn which intersects the diagonal BD at X. If AB = 12 cm, AD = 9 cm, then find the values of BD and BX. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

`square`ABCD is a rectangle. Taking AD as a diameter, a semicircle AXD is drawn which intersects the diagonal BD at X. If AB = 12 cm, AD = 9 cm, then find the values of BD and BX.

योग

उत्तर

Given: AB = 12 cm, AD = 9 cm

To find: BD = ?, BX = ?

By Pythagoras theorem,

(BD)2 = (AB)2 + (AD)2

∴ (BD)2 = (12)2 + (9)2 

∴ (BD)2 = 144 + 81

∴ (BD)2 = 225

Taking square root on both sides, we get

∴ BD = `sqrt225`

∴ BD = 15 cm

By Tangent secant segment theorem,

AB2 = BX × BD

∴ 122 = BX × 15

∴ BX = `144/15`

∴ BX = 9.6 cm

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (March) Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×