Advertisements
Advertisements
प्रश्न
An aeroplane travelled a distance of 400 km at an average speed of x km/hr. On the return journey the speed was increased by 40 km/hr. Write down the expression for the time taken for
The outward journey
उत्तर
Time taken for the onward journey
= `(400)/x"hours"`.
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equations by factorization:
`1/((x-1)(x-2))+1/((x-2)(x-3))+1/((x-3)(x-4))=1/6`
The sum of a numbers and its positive square root is 6/25. Find the numbers.
Solve the following quadratic equation by factorisation.
m2 - 11 = 0
Solve the following quadratic equations by factorization:
\[\frac{x - 2}{x - 3} + \frac{x - 4}{x - 5} = \frac{10}{3}; x \neq 3, 5\]
Solve the following quadratic equations by factorization:
\[3\left( \frac{7x + 1}{5x - 3} \right) - 4\left( \frac{5x - 3}{7x + 1} \right) = 11; x \neq \frac{3}{5}, - \frac{1}{7}\]
The perimeter of the right angled triangle is 60cm. Its hypotenuse is 25cm. Find the area of the triangle.
By increasing the speed of a car by 10 km/hr, the time of journey for a distance of 72 km. is reduced by 36 minutes. Find the original speed of the car.
Solve the following equation by factorization
x(6x – 1) = 35
Solve the following equation by factorisation :
x2 + 6x – 16 = 0
Car A travels x km for every litre of petrol, while car B travels (x + 5) km for every litre of petrol.
(i) Write down the number of litres of petrol used by car A and car B in covering a distance of 400 km.
(ii) If car A uses 4 litres of petrol more than car B in covering 400 km. write down an equation, in A and solve it to determine the number of litres of petrol used by car B for the journey.