Advertisements
Advertisements
प्रश्न
An anisotropic material has coefficient of linear thermal expansion α1, α2 and α3 along x, y and z-axis respectively. Coefficient of cubical expansion of its material will be equal to ______.
विकल्प
α1 + α2 + α3
α1 + 2α2 + 3α3
3α1 + 2α2 + α3
`(alpha_1 + alpha_2 + alpha_3)/3`
MCQ
रिक्त स्थान भरें
उत्तर
An anisotropic material has coefficient of linear thermal expansion α1, α2 and α3 along x, y and z-axis respectively. Coefficient of cubical expansion of its material will be equal to α1 + α2 + α3.
Explanation:
V = xyz
V' = (x + Δx) (y + Δy) (z + Δz)
Neglecting terms
V' = xyz + xy Δz + (Δx) yz + xΔyz
`V_2^' = V + (VDeltaz)/z + (VDeltax)/x + (VDeltay)/y`
`V_2^'` = V[1 + (α1 + α2 + α3)ΔT]
`("We know that" alpha xx DeltaT = (Deltaℓ)/ℓ)`
= V(1 + αeqΔT)
⇒ αeq = (α1 + α2 + α3)
shaalaa.com
Thermal Expansion
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?