Advertisements
Advertisements
प्रश्न
An arc of a circle of radius 21 cm subtends an angle of 60° at the centre Find:
- the length of the arc.
- the area of the minor segment of the circle made by the corresponding chord.
उत्तर
i. Given, r = 21 cm, θ = 60°
length of the arc APB = `theta/(360"°") xx 2pir`
= `(60"°")/(360"°") xx 2 xx 22/7 xx 21`
= `1/6 xx 2 xx 22 xx 3`
= 22 cm
ii. Area of the minor segment = Area of sector OAPB − Area of triangle of OAB
Now, Area of sector APB = `theta/(360"°") xx pir^2`
= `(60"°")/(360"°") xx 22/7 xx (21)^2`
= `1/6 xx 22/7 xx 21 xx 21`
= 231 cm2
and Area of triangle OAB = `1/2` × base × height
= `1/2` AB × OM
We draw OM ⊥ AB
∴ ∠OMB = ∠OMA = 90°
and by symmetry, M is mid-point of AB
∴ BM = AM = `1/2` AB ...(i)
In right ΔOMA, sin30° = `(AM)/(AO)`
⇒ `1/2 = (AM)/21`
⇒ AM = `21/2` cm
In right ΔOMA,
cos 30° = `(OM)/(AO)`
⇒ `sqrt3/2 = (OM)/21`
⇒ OM = `sqrt3/2 xx 21` cm
∴ from eq. (i)
AM = `1/2` AB
⇒ AB = 2 AM = `2 xx 21/2 = 21` cm
Thus, Area of ΔOAB = `1/2 xx 21 xx sqrt3/2 xx 21`
= `(441sqrt3)/4` cm2
Therefore, area of minor segment
= `(231 - (441sqrt3)/4)` cm2