Advertisements
Advertisements
प्रश्न
An electron (mass m) with an initial velocity `v = v_0hati` is in an electric field `E = E_0hatj`. If λ0 = h/mv0, it’s de Broglie wavelength at time t is given by ______.
विकल्प
`λ_0`
`λ_0 sqrt(1 + (e^2E_0^2t^2)/(m^2v_0^2))`
`λ_0/sqrt(1 + (e^2E_0^2t^2)/(m^2v_0^2))`
`λ_0/((1 + (e^2E_0^2t^2)/(m^2v_0^2))`
उत्तर
An electron (mass m) with an initial velocity `v = v_0hati` is in an electric field `E = E_0hatj`. If λ0 = h/mv0, it’s de Broglie wavelength at time t is given by `underline(λ_0/sqrt(1 + (e^2E_0^2t^2)/(m^2v_0^2)))`.
Explanation:
According to the problem de-Broglie wavelength of electron at time t = 0 is `λ_0 = h/(mv_0)`
Electrostatic force on electron in electric field is `vecF_e = - evecE = - eE_0hatj`
The acceleration of electron, `veca = vecF/m = - (eE_0)/m hatj`
It is acting along a negative y-axis.
The initial velocity of electron along x-axism `v_(x_0) = v_0hati`.
This component of velocity will remain constant as there is no force on the electron in this direction.
Now considering y-direction. Initial velocity of electron along y-axis, `v_(y_0)` = 0.
Velocity of electron after time t along y-axis,
`v_y = 0 + ((eE_0)/m hatj)t = - (eE_0)/m t hatj`
Magnitude of velocity of electron after time t is
`v = sqrt(v_x^2 + v_y^2) = sqrt(v_0^2 + ((-eE_0)/m t)^2`
⇒ `v_0 sqrt(1 + (e^2E_0^2t^2)/(m^2v_0^2))`
de-Broglie wavelength, `λ^' = h/(mv)`
= `h/(mv_0 sqrt(1 + (e^2E_0^2t^2)/(m^2v_0^2))) = λ_0/sqrt(1 + (e^2E_0^2t^2)/(m^2v_0^2))`
⇒ `λ^' = λ_0/((1 + (e^2E_0^2t^2)/(m^2v_0^2))`
APPEARS IN
संबंधित प्रश्न
The wavelength of light from the spectral emission line of sodium is 589 nm. Find the kinetic energy at which
(a) an electron, and
(b) a neutron, would have the same de Broglie wavelength.
What is the de Broglie wavelength of a ball of mass 0.060 kg moving at a speed of 1.0 m/s?
Crystal diffraction experiments can be performed using X-rays, or electrons accelerated through appropriate voltage. Which probe has greater energy? (For quantitative comparison, take the wavelength of the probe equal to 1 Å, which is of the order of inter-atomic spacing in the lattice) (me = 9.11 × 10−31 kg).
Obtain the de Broglie wavelength of a neutron of kinetic energy 150 eV. As you have an electron beam of this energy is suitable for crystal diffraction experiments. Would a neutron beam of the same energy be equally suitable? Explain. (mn= 1.675 × 10−27 kg)
State any one phenomenon in which moving particles exhibit wave nature.
Describe briefly how the Davisson-Germer experiment demonstrated the wave nature of electrons.
Why photoelectric effect cannot be explained on the basis of wave nature of light? Give reasons.
A particle is dropped from a height H. The de Broglie wavelength of the particle as a function of height is proportional to ______.
Two particles A and B of de Broglie wavelengths λ1 and λ2 combine to form a particle C. The process conserves momentum. Find the de Broglie wavelength of the particle C. (The motion is one dimensional).
In a Frank-Hertz experiment, an electron of energy 5.6 eV passes through mercury vapour and emerges with an energy 0.7 eV. The minimum wavelength of photons emitted by mercury atoms is close to ______.