हिंदी

An α-particle of energy 10 eV is moving in a circular path in uniform magnetic field. The energy of proton moving in the same path and same magnetic field will be -

Advertisements
Advertisements

प्रश्न

An α-particle of energy 10 eV is moving in a circular path in uniform magnetic field. The energy of proton moving in the same path and same magnetic field will be [mass of α-particle = 4 times mass of proton]

विकल्प

  • 8 eV

  • 16 eV

  • 4 eV

  • 10 eV

MCQ

उत्तर

10 eV

Explanation:

The radius of circular path of charged particle in uniform magnetic field,

R = `"mv"/"qB"`   ...(i)

The kinetic energy of charged particle.

K = `1/2 "mv"^2`

`=> "v" = sqrt("2K"/"m")`   ...(ii)

Substituting Eq. (ii) in Eq. (i), we get

R = `("m"sqrt("2K"/"m"))/"qB" = sqrt(2"mK")/"qB"`

For proton,

`"R"_"p" = sqrt(2"m"_"p""K"_"p")/("q"_"p""B")`   ...(iii)

where, mass of proton is mp, kinetic energy of proton is KP and charge on proton is qP.

Similarly, for α-particle,

`"R"_alpha = sqrt(2"m"_alpha"K"_alpha)/("q"_alpha"B")`   ...(iv)

where, mass of α-particle is mα, charge on α-particles is qα and kinetic energy of α-particle is Kα.

Here, mα = 4mp and qα = 2qp

Substituting value in Eq. (iv), we get

`"R"_alpha = sqrt(2(4"m"_"p")"K"_alpha)/("B"(2"q"_"p")) = (sqrt(2"m"_"p""K"_alpha))/("Bq"_"p")`

`therefore = "R"_"p"/"R"_alpha = sqrt("K"_"p"/"K"_alpha)`

As, Rp = Rα   ...(given)

∴ Kα = Kp = 10 eV

shaalaa.com
Angular S.H.M. and It's Differential Equation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×