हिंदी

Answer the following: If sinθ = x2-y2x2+y2 then find the values of cosθ, tanθ in terms of x and y. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

If sinθ = `(x^2 - y^2)/(x^2 + y^2)` then find the values of cosθ, tanθ in terms of x and y.

योग

उत्तर

Given, sinθ = `(x^2 - y^2)/(x^2 + y^2)`

We know that,

cos2θ = 1 – sin2θ

= `1 - ((x^2 - y^2)/(x^2 + y^2))^2`

= `((x^2 + y^2)^2 - (x^2 - y^2)^2)/((x^2 + y^2)^2`

= `(x^4+2x^2y^2+y^4-(x^4-2x^2y^2+y^4))/((x^2+y^2)^2)`

∴ cos2θ = `(4x^2y^2)/((x^2 + y^2)^2`

∴ cosθ = `±(2xy)/((x^2 + y^2))`

tanθ = `sintheta/costheta`

= `((x^2 - y^2)/(x^2 + y^2))/(±(2xy)/(x^2 + y^2)`

= `±(x^2 - y^2)/(2xy)`

Hence, cosθ = `±(2xy)/(x^2 + y^2)` and tanθ = `±(x^2 - y^2)/(2xy)`

shaalaa.com
Introduction of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Trigonometry - 1 - MISCELLANEOUS EXERCISE - 2 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Trigonometry - 1
MISCELLANEOUS EXERCISE - 2 | Q 8) | पृष्ठ ३३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×