Advertisements
Advertisements
प्रश्न
Answer the following:
If sinθ = `(x^2 - y^2)/(x^2 + y^2)` then find the values of cosθ, tanθ in terms of x and y.
योग
उत्तर
Given, sinθ = `(x^2 - y^2)/(x^2 + y^2)`
We know that,
cos2θ = 1 – sin2θ
= `1 - ((x^2 - y^2)/(x^2 + y^2))^2`
= `((x^2 + y^2)^2 - (x^2 - y^2)^2)/((x^2 + y^2)^2`
= `(x^4+2x^2y^2+y^4-(x^4-2x^2y^2+y^4))/((x^2+y^2)^2)`
∴ cos2θ = `(4x^2y^2)/((x^2 + y^2)^2`
∴ cosθ = `±(2xy)/((x^2 + y^2))`
tanθ = `sintheta/costheta`
= `((x^2 - y^2)/(x^2 + y^2))/(±(2xy)/(x^2 + y^2)`
= `±(x^2 - y^2)/(2xy)`
Hence, cosθ = `±(2xy)/(x^2 + y^2)` and tanθ = `±(x^2 - y^2)/(2xy)`
shaalaa.com
Introduction of Trigonometry
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?