Advertisements
Advertisements
प्रश्न
Answer the following:
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
उत्तर
Train | Car | Number of outcomes |
|
No. of friends |
3 | 6 | 9C3 |
4 | 5 | 9C4 | |
5 | 4 | 9C5 | |
6 | 3 | 9C6 |
Required number = 9C3 + 9C4 + 9C5 + 9C6
APPEARS IN
संबंधित प्रश्न
Find r if `""^14"C"_(2"r"): ""^10"C"_(2"r" - 4)` = 143:10
If `""^"n""C"_("r" - 1)` = 6435, `""^"n""C"_"r"` = 5005, `""^"n""C"_("r" + 1)` = 3003, find `""^"r""C"_5`.
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 10
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear.
Find the number of triangles formed by joining 12 points if no three points are collinear,
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 12 vowels are chosen?
Find x if `""^"n""P"_"r" = "x" ""^"n""C"_"r"`
Find r if `""^11"C"_4 + ""^11"C"_5 + ""^12"C"_6 + ""^13"C"_7 = ""^14"C"_"r"`
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two questions from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
Find n if 2nC3 : nC2 = 52 : 3
If nPr = 1814400 and nCr = 45, find n+4Cr+3
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 15
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are chosen?
Find n if 21C6n = `""^21"C"_(("n"^2 + 5))`
Find the differences between the greatest values in the following:
14Cr and 12Cr
Find the differences between the greatest values in the following:
13Cr and 8Cr
Find the differences between the greatest values in the following:
15Cr and 11Cr
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Five students are selected from 11. How many ways can these students be selected if two specified students are selected?
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Select the correct answer from the given alternatives.
The number of ways in which 5 male and 2 female members of a committee can be seated around a round table so that the two females are not seated together is
Answer the following:
30 objects are to be divided in three groups containing 7, 10, 13 objects. Find the number of distinct ways for doing so.
The maximum value of z = 9x + 11y subject to 3x + 2y ≤ 12, 2x + 3y ≤ 12, x ≥ 0, y ≥ 0 is _______.
If `1/(8!) + 1/(7!) = x/(9!)`, than x is equal to ______.
If vertices of a parallelogram are respectively (2, 2), (3, 2), (4, 4), and (3, 4), then the angle between diagonals is ______
If 'n' is positive integer and three consecutive coefficient in the expansion of (1 + x)n are in the ratio 6 : 33 : 110, then n is equal to ______.