Advertisements
Advertisements
प्रश्न
Bring out the inconsistency; if any: byx + bxy = 1.30. and r = 0.75
उत्तर
Given byx + bxy = 1.30. and r = 0.75
`therefore ("b"_"yx" + "b"_"xy")/2 = 1.30/2 = 0.65`
0.65 < 0.75 = r
∴ The data is inconsistent.
APPEARS IN
संबंधित प्रश्न
Examine whether the following statement pattern is tautology, contradiction or contingency :
p ∨ – (p ∧ q)
The regression equation of y on x is given by 3x + 2y - 26 = O. Find byx.
Two samples from bivariate populations have 15 observations each. The sample mean of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from means are 136 and 148. The sum of product of deviations from respective means is 122. Obtain the equation of line of regression of X on Y.
Bring out the inconsistency, if any in the following :
bYX + bXY = 1.30 and r = 0.75
Bring out the inconsistency, if any in the following :
bYX = bXY = 1.50 and r = -0.9
For a bivariate data,
`bar x = 53 , bar y = 28 , "b"_"xy" = - 0.2` , `"b"_"yx" = -1.5` Find
Estimate of Y , When X = 50.
For a bivariate data,
`bar x = 53 , bar y = 28 , "b"_"yx"=-1.5 and "b"_"xy"=- 0.2` Find Estimate of X for y = 25.
From the two regression equations y = 4x - 5 and 3x = 2y + 5, find `barx and bary`
Let X be the number of matches played by the player and Y he the number of matches in which he scored more thun 50 runs. The following data is obtained for 5 players :
No. of Matches Played (X) | Data of matches of 5 players | ||||
21 | 25 | 26 | 24 | 19 | |
Scored more than 50 in a match (Y) | 19 | 20 | 24 | 21 | 16 |
Find the regression line of X on Y.
Find the line of best fit for the following data, treating x as the dependent variable (Regression equation x on y):
X | 14 | 12 | 13 | 14 | 16 | 10 | 13 | 12 |
Y | 14 | 23 | 17 | 24 | 18 | 25 | 23 | 24 |
Hence, estimate the value of x when y = 16.
A psychologist selected a random sample of 22 students. He grouped them in 11 pairs so that the students in each pair have nearly equal scores in an intelligence test. In each pair, one student was taught by method A and the other by method B and examined after the course. The marks obtained by them after the course are as follows:
Pairs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Methods A | 24 | 29 | 19 | 14 | 30 | 19 | 27 | 30 | 20 | 28 | 11 |
Methods B | 37 | 35 | 16 | 26 | 23 | 27 | 19 | 20 | 16 | 11 | 21 |
Calculate Spearman’s Rank correlation.
For 5 observations of pairs (x, y) of variables X and Y, the following results are obtained:
∑x = 15, ∑y = 25, ∑x2 = 55, ∑y2 = 135, ∑xy = 83.
Calculate the value of bxy and byx.
The following table shows the Mean, the Standard Deviation and the coefficient of correlation of two variables x and y.
Series | x | y |
Mean | 8 | 6 |
Standard deviation | 12 | 4 |
Coefficient of correlation | 0.6 |
Calculate:
- the regression coefficient bxy and byx
- the probable value of y when x = 20
If the correlation coefficient of two sets of variables (X, Y) is `(-3)/4`, which one of the following statements is true for the same set of variables?
Mean of x = 53, mean of y = 28 regression co-efficient y on x = −1.2, regression co-efficient x on y = −0.3. Find coefficient of correlation (r).
The random variables have regression lines 3x + 2y − 26 = 0 and 6x + y − 31 = 0. Calculate co-efficient of correlations.