हिंदी

By selling at Rs. 92, some 2.5% Rs. 100 shares and investing the proceeds in 5% Rs. 100 shares at Rs. 115, a person increased his annual income by Rs. 90. Find:(i) the number of shares sold.(ii) the - Mathematics

Advertisements
Advertisements

प्रश्न

By selling at Rs. 92, some 2.5% Rs. 100 shares and investing the proceeds in 5% Rs. 100 shares at Rs. 115, a person increased his annual income by Rs. 90. Find:
(i) the number of shares sold.
(ii) the number of shares purchased.
(iii) the new income.
(iv) the rate percent which he earns on his investment.

योग

उत्तर

Rate of dividend = 2.5% and market price = Rs. 92
Let number of shares purchased = x.
Selling price of x shares = 92 x
Income from investing

₹ x = `(92x xx 2.5)/(92)`

= `(92 xx x 25)/(92 xx 10)`

= `(5)/(2)x`
Again by investing 92 x in 5% at ₹ 115

the dividend = `(92x xx 5)/(115)` = 4x

Difference = `4x - (5)/(2)x = (3)/(2)x`

∴ `(3)/(2)x` = 90

⇒ x = `(90 xx 2)/(3)` = 60

(i) ∴ No. of shares = 60

(ii) No. of shares sold = `(92x)/(115)`

= `(92 xx 60)/(115)` = 48
(iii) New income = 4x = 4 x 60 = ₹ 240
(iv) Rate percent interest on investment

= `(5 xx 100)/(115)`

= `(100)/(23)`

= `4(8)/(23)`%.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Shares and Dividends - Chapter Test

APPEARS IN

एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
अध्याय 3 Shares and Dividends
Chapter Test | Q 5

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×