Advertisements
Advertisements
प्रश्न
Choose the correct option:
If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is
विकल्प
0
1
x
2x
MCQ
उत्तर
0
Explanation:
Given Δ = `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]`
= `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + (a + c)),(x + 4, x + 5, x + 2c)]` ......(Since a, b and c are in A.P., 2b = a + c)
Applying R1 `→` R1 – R2 and R3 `→` R1 - R2
Δ = `[(-1, -1, a - c),(x + 3, x + 4, x + (a + c)),(1, 1, c - a)]`
Applying R1 `→` R1 + R3
Δ = `|(0, 0, 0),(x + 3, x + 4, x + (a + c)),(1, 1, c - a)|` = 0
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?