Advertisements
Advertisements
प्रश्न
Compare the following pair of ratios.
`(3sqrt5)/(5sqrt7) , sqrt 63 / sqrt 125`
उत्तर
`3sqrt5 xx sqrt 125 = 3sqrt5 xx sqrt (25 xx 5) = 3sqrt5 xx 5sqrt5 = 75`
`5sqrt7 xx sqrt63 = 5sqrt7 xx sqrt ( 9 xx 7) = 5sqrt7 xx 3sqrt7 = 105`
Now, 75 < 105
`therefore (3sqrt5)/(5sqrt7) < sqrt 63/ sqrt 125`.
APPEARS IN
संबंधित प्रश्न
Using the property `bb("a"/"b" = ("ak")/("bk"))`, fill in the blanks substituting proper numbers in the following.
`5/7 = ("___")/28 = 35/("___") = ("___")/3.5`
Using the property `bb(a/b = (ak)/(bk))`, fill in the blanks substituting proper numbers in the following.
`9/14 = 4.5/("___") = ("___")/ 42 = ("___") /3.5`
Compare the following pair of ratios.
`sqrt5/3 , 3/ sqrt7`
Compare the following pair of ratios.
`5/18,17/121`
Compare the following pair of ratios.
`sqrt80/sqrt48 , sqrt45/sqrt27`
Compare the following pair of ratios.
`9.2/5.1, 3.4/7.1`
If a : b = 3 : 1 and b : c = 5 : 1 then find the value of
`(a^3/{15b^2c})^3`
If `sqrt(0.04 xx 0.4 xx a ) = 0.4 xx0.04 xx sqrtb` then find the ratio `a/b`.
( x + 3) : ( x + 11) = ( x - 2) : ( x + 1) then find the value of x.
If a : b = 3 : 1 and b : c = 5 : 1 then find the value of `a^2/ (7bc)`