Advertisements
Advertisements
प्रश्न
Complete the following equation describing nuclear decay.
\[\ce{_88^226Ra->_2^4\alpha {+}}\] ______.
उत्तर
\[\ce{_88^226Ra->_2^4\alpha{ +} \underline{\ce{_86^222Em}}}\]
Em (Emanation) ≡ Rn (Radon)
Here, α particle is emitted, and radon is formed.
APPEARS IN
संबंधित प्रश्न
Describe alpha, beta and gamma decays and write down the formulae for the energies generated in each of these decays.
Complete the following equation describing nuclear decay.
\[\ce{_8^19O->e^- { +}}\] _____
Complete the following equation describing nuclear decay.
\[\ce{_7^12N -> _6^12C {+}}\] ______
Choose the correct option.
\[\ce{^60_27CO}\] decays with a half-life of 5.27 years to produce \[\ce{^60_28Ni}\]. What is the decay constant for such radioactive disintegration?
The half-life of 35S is 87.8 d. What percentage of 35S sample remains after 180 d?
A 3/4 of the original amount of radioisotope decays in 60 minutes. What is its half-life?
A sample of 32P initially shows activity of one Curie. After 303 days, the activity falls to 1.5 × 104 dps. What is the half-life of 32P?
A sample of old wood shows 7.0 dps/g. If the fresh sample of tree shows 16.0 dps/g, how old is the given sample of wood? (Half-life of 14C is 5730 y)
The half-life of a certain radioactive species is 6.93 × 105 seconds. What is the decay constant?
The half-life of a certain radioactive nucleus is 3.2 days. Calculate (i) decay constant (ii) average life of radioactive nucleus.
Show that for radioactive decay N(t) = `"N"_"O" "e"^{-λ"t"}`, where symbols have their usual meaning.
A radioactive substance decays to (1/10)th of its original value in 56 days. Calculate its decay constant.
A radioactive nucleus emits 4 α-particles and 7 β-particles in succession. The ratio of number of neutrons of that of protons, is
[A = mass number, Z =atomic number]
The rate of radioactive disintegration at an instant for a radioactive sample of half-life 2.2 x 109 s is 1010 s-1. The number of radioactive atoms in that sample at that instant is, ______
A radioactive substance has half life of 3 hours. 75 % of the substance would decay in ____________.
A radioactive element has rate of disintegration 10,000 disintegrations per minute at a particular instant. After four minutes it become 2500 disintegrations per minute. The decay constant per minute is ______.
For radioactive substances, the fraction of its initial quantity (N0) which will disintegrate in its average lifetime is about ______.
(e = 2.71)
The half-life of a radioactive substance is 10 days. The time taken for the `(7/8)^"th"` of the sample of disintegrates is ______.
The graph obtained by plotting loge (A) [A is the activity of a radioactive sample] against t (time) out of the following is:
The disintegration rate of a radio-active sample is 1010 per hour at 20 hours from the start. It reduces to 5 × 109 per hour after 30 hours. Calculate the decay constant.
If the number of nuclei of a radioactive substance becomes `1/e` times the initial number in 10 days, what is the decay constant of the substance?
The half-life of \[\ce{^238_92U}\] undergoing ∝- -decay is 4.5 × 109 years. What is the activity of 1g sample of \[\ce{^238_92U}\]?
Define half life period.