Advertisements
Advertisements
प्रश्न
Compute the appropriate regression equation for the following data:
X | 1 | 2 | 3 | 4 | 5 |
Y | 5 | 7 | 9 | 11 | 13 |
X is the independent variable and Y is the dependent variable.
योग
उत्तर
Since X is an independent variable and Y is a dependent variable, we find the regression equation of Y on X.
X = xi | Y = yi | `x_i^2` | xi yi |
1 | 5 | 1 | 5 |
2 | 7 | 4 | 8 |
3 | 9 | 9 | 27 |
4 | 11 | 16 | 64 |
5 | 13 | 25 | 125 |
15 | 45 | 55 | 229 |
From the table, we have,
n = 3, ∑ xi = 15, ∑ yi = 45, `sum x_i^2 = 55`, ∑ xi yi = 229
`barx = (sum x_i)/n 15/3 = 5`
`bary = (sum y_i)/n = 45/3 = 15`
Now, `b_YX = (sumx_i y_i - n bar x bar y)/(sum x_i^2 - n barx^2)`
`= (229 - 3xx5xx15)/(55 - 3(5)^2)`
= `(229 - 225)/(55 - 75)`
= `4/-20`
∴ bYX = − 0.2
Also, `a' = bary - b_YX barx`
= 15 − (− 0.2) (5)
= 15 + 1.0
= 1.5
∴ The regression equation of Y on X is
Y = a' + bYX X
∴ Y = 1.5 - 0.2 X
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?