Advertisements
Advertisements
प्रश्न
Consider a random variable X with p.d.f.
f(x) = `{(3x^2",", "if" 0 < x < 1),(0",", "otherwise"):}`
Find E(X) and V(3X – 2)
उत्तर
Let X be the random variable
`"E"(x^2) = int_(-oo)^oo x"f"(x) "d"x`
`"E"(x) = int_0^1 x(3x^2) "d"x`
= `int_0^1 x(3x^3) "d"x`
= `3[x^4/4]_0^1`
= `3/4[x^4]_0^1`
= `3/4[1 - 0]`
`"E"(x) = 3/4`
`"E"(x^2) = int_(-oo)^oo x^2"f"(x) "d"x`
= `int_0^1 x^2 (3x^2) "d"x`
= `int_0^1 3x^4 "d"x`
= `3(x^5/5)_0^1`
= 3/5[x^5]_0^1`
= `3/5[1 - 0]`
= `3/5`
Var(x) = `"E"(x^2) - ["E"(x)]^2`
= `33/5 - (3/4)^2`
= `3/5 - 9/16`
= `(48 - 45)/80`
Var(x) = `3/80`
`"v"(3x - 2) = (3)^2"Var"(x)` .......`{because "v"(""x + "b") = "a"^2"v"(x)}`
= `9(3/80)`
∴ `"V"(3x - 2) = 27/80`
APPEARS IN
संबंधित प्रश्न
The distribution of a continuous random variable X in range (– 3, 3) is given by p.d.f.
f(x) = `{{:(1/16(3 + x)^2",", - 3 ≤ x ≤ - 1),(1/16(6 - 2x^2)",", - 1 ≤ x ≤ 1),(1/16(3 - x)^2",", 1 ≤ x ≤ 3):}`
Verify that the area under the curve is unity.
Suppose that the time in minutes that a person has to wait at a certain station for a train is found to be a random phenomenon with a probability function specified by the distribution function
F(x) = `{{:(0",", "for" x ≤ 0),(x/2",", "for" 0 ≤ x < 1),(1/2",", "for" ≤ x < 2),(x/4",", "for" 2 ≤ x < 4),(1",", "for" x ≥ 4):}`
What is the probability that a person will have to wait (i) more than 3 minutes, (ii) less than 3 minutes and (iii) between 1 and 3 minutes?
Define dicrete random Variable
Distinguish between discrete and continuous random variables.
Explain the terms probability density function
Choose the correct alternative:
If c is a constant, then E(c) is
Choose the correct alternative:
If c is a constant in a continuous probability distribution, then p(x = c) is always equal to
Choose the correct alternative:
A variable which can assume finite or countably infinite number of values is known as
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(|X| ≤ 2)
The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",", x = 1),(3k",", x = 3),(4k",", x = 5),(0",", "otherwise"):}`
where k is some constant. Find k