Advertisements
Advertisements
प्रश्न
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
विकल्प
2.00
3.00
4.00
5.00
MCQ
रिक्त स्थान भरें
उत्तर
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to 4.00. (where c < d)
Explanation:
f(x) = sin–1[2x] + cos–1([x] – 1)
–1 ≤ [2x] ≤ 1 and –1 ≤ [x] – 1 ≤ 1
⇒ –1 ≤ 2x < 2 and 0 ≤ [x] ≤ 2
⇒ `-1/2 ≤ x < 1` and 0 ≤ x < 3
⇒ 0 ≤ x < 1 Domain [0, 1)
⇒ [x] = 0
⇒ 0 ≤ 2x < 2
⇒ [2x] = 0 or 1
Now f(x) = sin–1[2x] + cos–1(–1)
= `(0 or π/2) + π = π or (3π)/2`
⇒ `a + b + (2d)/c` = 1 + 3 = 4
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?