Advertisements
Advertisements
प्रश्न
Consider three observations a, band c such that b = a + c. If the standard deviation of a + 2, b + 2, c + 2 is d, then which of the following is true?
विकल्प
b2 = a2 + c2 + 3d2
b2 = 3(a2 + c2) – 9d2
b2 = 3(a2 + c2) + 9d2
b2 = 3(a2 + c2 + d2)
उत्तर
`bb(b^2 = 3(a^2 + c^2) - 9d^2)`
Explanation:
For three observations a, b and c,
Mean `(barx) = (a + b + c)/3`
Also given that b = a + c
`(barx) = (2b)/3` ...(i)
Also given that standard deviation of (a + 2), (b + 2) and (c + 2) is d.
S.D. (a + 2, b + 2, c + 2) = d
S.D. (a, b, c) = d
d2 = `(a^2 + b^2 + c^2)/3 - (barx)^2`; S.D. = `sqrt((sumx^2)/n - (barx)^2`
d2 = `(a^2 + b^2 + c^2)/3 - ((2b)/3)^2`
d2 = `(3(a^2 + b^2 + c^2) - 4b^2)/9`
9d2 = 3(a2 + b2 + c2) – 4b2
9d2 = 3(a2 + c2) + 3b2 – 4b2
9d2 = 3(a2 + c2) – b2
b2 = 3(a2 + c2) – 9d2