Advertisements
Advertisements
प्रश्न
Derive the relation between `DeltaG^@`and equilibrium constant (K) for the reaction -
aA_bB ⇌ cC+dD.
उत्तर
The free energy (G) of any substance at a temperature T is represented as
`G=G^@+RTln[`
A+B ⇌ C+D
GA, GB, GC and GD are standard free energies
`G_A=G_A^0+RTln[A]`
`G_B=G_B^0+RTln[B]`
`G_C=G_c^0+RTln[C]`
`G_D=G_D^0+RTln[D]`
`:.DeltaG=sumG_"product"-sumG_"reactant"`
`=[G_C+G_D]-[G_A+G_B]`
`={G_C^0+RTln[C]+G_D^0+RTLn[D]}-{G_A^0+RTln[A]+G_B^0+RTln[B]}`
`{(G_C^0+G_D^0)-(G_A^0+G_B^0)}+{RTln[C]+RTln[D]-RTln[A]+RTln[B]}`
if `DeltaG^0={(G_C^0+G_D^0)-(G_A^0+G_B^0)}`
`:.DeltaG=DeltaG^0+(RTln[C]xx[D]-RTln[A]xx[B])`
`DeltaG=DeltaG^0+RTln`
or `DeltaG=DeltaG^0+RTlnQ`
`Q=(["product"])/(["reactant"])`
`Q=K=([C]xx[D])/([A]xx[B])`
Hence from above equation
`DeltaG=DeltaG^0+RTlnk`
since at equillibrium ΔG=0
`:.O=DeltaG^0+RTlnK`
`:.DeltaG^0=-RTlnK`
or
`:.DeltaG^0=-2.303RTlog_10K`
APPEARS IN
संबंधित प्रश्न
Amongst the following identify the criterion for a process to be at equilibrium -
- ΔG < 0
- ΔG > 0
- ΔStotal=0
- ΔS < 0
The equilibrium constant Kp for the reaction,
H2(g) + I2(g) → 2HI(g) is 130 at 510 K. Calculate ΔGo for the following reaction at the same temperature: 2HI(g) → H2(g) + I2(g) [Given: R = 8.314 J K-1 mol-1 ]
Write chemical reactions involved in Van Arkel method for refining Titanium
Explain the relationship between Gibb's standard energy change of the reaction and equilibrium constant.