Advertisements
Advertisements
प्रश्न
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
3x2 + 4x + 5, x − 2
उत्तर
\[\frac{3 x^2 + 4x + 5}{x - 2}\]
\[ = \frac{3x(x - 2) + 10(x - 2) + 25}{(x - 2)}\]
\[ = \frac{(x - 2)(3x + 10) + 25}{(x - 2)}\]
\[ = (3x + 10) + \frac{25}{(x - 2)}\]
\[\text{Therefore,} \]
\[\text{quotient = 3x + 10 and remainder = 25 .} \]
APPEARS IN
संबंधित प्रश्न
Write each of the following polynomials in the standard form. Also, write their degree.
x2 + 3 + 6x + 5x4
Write each of the following polynomials in the standard form. Also, write their degree.
(x3 − 1)(x3 − 4)
Write each of the following polynomials in the standard form. Also, write their degree.
Divide 24a3b3 by −8ab.
Divide 4z3 + 6z2 − z by −\[\frac{1}{2}\]
Divide m3 − 14m2 + 37m − 26 by m2 − 12m +13.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
14x2 + 13x − 15 | 7x − 4 |
Using division of polynomials, state whether
z2 + 3 is a factor of z5 − 9z
What must be added to x4 + 2x3 − 2x2 + x − 1 , so that the resulting polynomial is exactly divisible by x2 + 2x − 3?
Find whether the first polynomial is a factor of the second.
x + 1, 2x2 + 5x + 4