Advertisements
Advertisements
प्रश्न
Divide:
x4 − y4 by x2 − y2
उत्तर
\[ \frac{x^4 - y^4}{x^2 - y^2}\]
\[ = \frac{( x^2 )^2 - ( y^2 )^2}{( x^2 - y^2 )}\]
\[ = \frac{( x^2 + y^2 )( x^2 - y^2 )}{( x^2 - y^2 )}\]
\[ = x^2 + y^2\]
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
(x3 + 2x2 + 3x) ÷ 2x
Write each of the following polynomials in the standard form. Also, write their degree.
(y3 − 2)(y3 + 11)
Divide 24a3b3 by −8ab.
Divide 72xyz2 by −9xz.
Divide \[y^4 - 3 y^3 + \frac{1}{2} y^2 by 3y\]
Divide\[- x^6 + 2 x^4 + 4 x^3 + 2 x^2\ \text{by} \sqrt{2} x^2\]
Divide 6x3 + 11x2 − 39x − 65 by 3x2 + 13x + 13 and find the quotient and remainder.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
6y5 − 28y3 + 3y2 + 30y − 9 | 2y2 − 6 |
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
4y3 + 8y + 8y2 + 7 | 2y2 − y + 1 |
Using division of polynomials, state whether
3y2 + 5 is a factor of 6y5 + 15y4 + 16y3 + 4y2 + 10y − 35