Advertisements
Advertisements
प्रश्न
Evaluate:
`int (logx)^2 dx`
योग
उत्तर
I = `int (logx)^2*1dx`
Integrating by parts
I = `(logx)^2 int 1dx - int(int1dx d/dx(logx)^2)dx`
∴ I = `(logx)^2(x) - int(x*2logx*1/x)dx`
∴ I = `x(logx)^2 - 2intlogx*1dx`
Again integrating by parts,
I = `x(logx)^2 - 2[logx(x) - intx*1/xdx]`
= `x(logx)^2 - 2[xlogx - x] + c`
= `x(logx)^2 - 2xlogx + 2x + c`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?