हिंदी

Evaluate the determinant. |3-1-200-13-50| - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the determinant.

`|(3,-1,-2),(0,0,-1),(3,-5,0)|`

योग

उत्तर

|A| = `abs ((3,-1,-2),(0,0,-1),(3,-5,0))`

`= 3|(0,-1),(-5,0)| + 1|(0,-1),(3,0)| - 2|(0,0),(3,-5)|`

`= 3 [0 xx 0 - (- 1) xx (-5)] + 1[0 xx 0 - (- 1) xx 3] - 2[0 xx (- 5) - 0 xx (3)]`

= 3[0 - 5] + 1[0 + 3] - 2 [0 - 0]

= 3 × (- 5) + 1[0 + 3] - 2[0 - 0] 

= - 15 + 3

= - 12

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise 4.1 [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise 4.1 | Q 5.1 | पृष्ठ १०८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If ` x in N and |[x+3,-2],[-3x,2x]|=8` , then find the value of x.


Evaluate the determinant.

`|(x^2-x+1, x -1),(x+1, x+1)|`


If A = `[(1,2),(4,2)]` then show that |2A| = 4|A|


Evaluate the determinant.

`|(3,-4,5),(1,1,-2),(2,3,1)|`


Evaluate the determinant.

`|(0,1,2),(-1,0,-3),(-2,3,0)|`


Evaluate the determinant.

`|(2,-1,-2),(0,2,-1),(3,-5,0)|`


If `|(x, 2),(18, x)| = |(6,2),(18,6)|`, then x is equal to ______.


Prove that the determinant `|(x,sin theta, cos theta),(-sin theta, -x, 1),(cos theta, 1, x)|` is independent of θ.


Prove that `|(a^2, bc, ac+c^2),(a^2+ab, b^2, ac),(ab, b^2+bc, c^2)| = 4a^2b^2c^2`


Choose the correct answer.

If abc, are in A.P., then the determinant

`|(x+2, x+3,x +2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)|`

A. 0

B. 1

C. x

D. 2x


In question 18, write the value of a11 C21 + a12 C22 + a13 C23.


If A is a square matrix satisfying AT A = I, write the value of |A|.


A is a skew-symmetric of order 3, write the value of |A|.


If A, B, C are three non-null square matrices of the same order, write the condition on A such that AB = AC⇒ B = C.


One root of the equation `abs ((3"x" - 8, 3,3),(3, 3"x" - 8, 3),(3,3,3"x" - 8)) = 0` is ____________.


If A `= [(2,3),(1,-4)]  "and B" = [(1,-2),(-1,3)],` then find (AB)-1.


If A `= [(2,3),(3,4)],` then find A-1.


Find a 2 x 2 matrix B such that B `= [(1, -2),(1,4)] = [(6,0),(0,6)]`


Let A = `((cos^2x, sin^2x),(sin^2x, cos^2x))` and B = `((sin^2x, cos^2x),(cos^2x, sin^2x))`. Then the determinant of the matrix A + B is


Evaluate `|(x, x + 1),(x - 1, x)|`


Find the value of 'x' for which `|(3, x),(x, 1)| = |(3, 2),(4, 1)|`


If `|(x, 2),(18, x)| = |(6, 2),(18, 6)|`, then 'x' is equal to


There are two number 'x' making the value of the `|(1, -2, 5),(2, x, -1),(0, 4, 2x)|` equals to 86. The sum of there two number, is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×