हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Evaluate the following: ed∫0π2e-tanxcos6x dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^(pi/2) ("e"^(-tanx))/(cos^6x)  "d"x`

योग

उत्तर

= `int_0^(pi/2) "e"^(-tanx) sec^6  x  "d"x`

= `int_0^(pi/2) "e"^(-tanx) sec^4x sec^2x  "d"x`  ..........(1)

Put t = tan x    .........(2)

Differentiate with respect to 'x'

dt = sec2x dx   .........(3)

x 0 `pi/2`
t 0 `oo`

Sbstute (2) and (3) in (1), we get

(1) ⇒ = `int_0^oo "e"^(-"t")(sec^2x)^2  "dt"`  ........`(because  sec^2x = 1+ tan^2x = 1 + "t"^2)`

= `int_0^o "e"^(-"t") (1 + "t"^2)^2  "dt"`

= `int_0^oo "e"^(-"t") (1 + "t"^4 + 2"t"^2)  "dt"`

= `int_0^oo "e"^(-"t") "dt" + int_0^oo "e"^(-"t")"t"^4  "dt"  2int_0^oo "e"^(-"t")"t"^2 "dt"`

By ussing Gamma Integral,

= `(- "e"^(-"t"))_0^oo + (4!)/((1)^(4 + 1)) + 2((2!))/((1)^(2 + 1))`

= `-"e"^(- oo) + "e"^0 + 4! + 2(2!)`

= 0 + 1 + 24 + 4

= 29

shaalaa.com
Gamma Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.7 [पृष्ठ १२२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.7 | Q 1. (ii) | पृष्ठ १२२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×