Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^(pi/2) ("e"^(-tanx))/(cos^6x) "d"x`
उत्तर
= `int_0^(pi/2) "e"^(-tanx) sec^6 x "d"x`
= `int_0^(pi/2) "e"^(-tanx) sec^4x sec^2x "d"x` ..........(1)
Put t = tan x .........(2)
Differentiate with respect to 'x'
dt = sec2x dx .........(3)
x | 0 | `pi/2` |
t | 0 | `oo` |
Sbstute (2) and (3) in (1), we get
(1) ⇒ = `int_0^oo "e"^(-"t")(sec^2x)^2 "dt"` ........`(because sec^2x = 1+ tan^2x = 1 + "t"^2)`
= `int_0^o "e"^(-"t") (1 + "t"^2)^2 "dt"`
= `int_0^oo "e"^(-"t") (1 + "t"^4 + 2"t"^2) "dt"`
= `int_0^oo "e"^(-"t") "dt" + int_0^oo "e"^(-"t")"t"^4 "dt" 2int_0^oo "e"^(-"t")"t"^2 "dt"`
By ussing Gamma Integral,
= `(- "e"^(-"t"))_0^oo + (4!)/((1)^(4 + 1)) + 2((2!))/((1)^(2 + 1))`
= `-"e"^(- oo) + "e"^0 + 4! + 2(2!)`
= 0 + 1 + 24 + 4
= 29
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`int_0^oo x^5 "e"^(-3x) "d"x`
Evaluate the following:
If `int_0^oo "e"^(-"a"x^2) x^3 "d"x` = 32, `alpha > 0`, find `alpha`
Choose the correct alternative:
The value of `int_0^1 x(1 - x)^99 "d"x` is
Choose the correct alternative:
If `("I'"("n" + 2))/("I'n")` = 90 then n is
Choose the correct alternative:
The value of `int_0^oo "e"^(-3x) x^2 "d"x` is