हिंदी

Evaluate the following : limx→∞[x2+4x+16-x2+16] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :

`lim_(x -> ∞) [sqrt(x^2 + 4x + 16) - sqrt(x^2 + 16)]`

योग

उत्तर

`lim_(x -> ∞)sqrt(x^2 + 4x + 16) - sqrt(x^2 + 16)`

= `lim_(x -> ∞) (sqrt(x^2 + 4x +16) - sqrt(x^2 + 16)  sqrt(x^2 + 4x + 16) + sqrt(x^2 + 16))/(sqrt(x^2 + 4x + 16) + sqrt(x^2 + 16))`

= `lim_(x -> ∞) ((x^2 + 4x + 16 - x^2 - 16))/(sqrt(x^2 + 4x + 16) + sqrt(x^2 + 16))`

= `lim_(x -> ∞) (4x)/(sqrt(x^2 + 4x + 16) + sqrt(x^2 + 16))`

= `lim_(x -> ∞) ((4x)/x)/((sqrt(x^2 + 4x + 16) + sqrt(x^2 + 16))/x`

= `lim_(x -> ∞) ((4x)/x)/(sqrt((x^2 + 4x + 16)/x^2) + sqrt((x^2 + 16)/x^2))`

= `lim_(x -> ∞) 4/(sqrt(1 + 4/x + 16/x^2) + sqrt(1 + 16/x^2))`

= `4/(lim_(x -> ∞) sqrt(1 + 4/x + 16/x^2) + lim_(x -> ∞) sqrt(1 + 16/x^2)`

= `4/(sqrt(1 + 0 + 0) + sqrt(1 + 0))  ....[because lim_(x -> ∞) 1/x^"k" = 0, "k" > 0]`

= `4/2`

= 2

shaalaa.com
Limit at Infinity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.7 [पृष्ठ १५७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Exercise 7.7 | Q II. (2) | पृष्ठ १५७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×