Advertisements
Advertisements
प्रश्न
`f(x) = {{:(x^10 - 1",", if x ≤ 1),(x^2",", if x > 1):}` is discontinuous at
विकल्प
1
2
3
4
MCQ
उत्तर
1
Explanation:
At `x` = 1, L.H.L = `lim_(x -> 1^-) f(x) = (x^10 - 1)` = 0
R.H.L = `lim_(x -> 1^+) = f(x) = lim_(x -> 1^+) (x^2)` = 1
`f(1) = 1^10 - 1` = 0
∴ L.H.L ≠ R.H.L ≠ `f(1)`
⇒ `f` is not continous at `x` = 1.
At `x = C < 1, lim_(x -> C) (x^10 - 1) = C^10 - 1 = f(C)`
⇒ `f` is continuous at all points x ∈ R – |L|
Point of discontinuity is `x` = 1.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?