Advertisements
Advertisements
प्रश्न
Factorise p4 + q4 + p2q2.
योग
उत्तर
We have, p4 + q4 + p2q2
= p4 + q4 + 2p2q2 – 2p2q2 + p2q2 ...[Adding and subtracting 2p2q2]
= p4 + q4 + 2p2q2 – p2q2
= [(p2)2 + (q2)2 + 2p2q2] – p2q2 ...[Using the identity, a2 + b2 + 2ab = (a + b)2]
= (p2 + q2)2 – (pq)2
= (p2 + q2 + pq)(p2 + q2 – pq) ...[Using the identity, a2 – b2 = (a + b)(a – b)]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Algebraic Expression, Identities and Factorisation - Exercise [पृष्ठ २३८]
APPEARS IN
संबंधित प्रश्न
Use a suitable identity to get the following products.
(1.1m − 0.4) (1.1 m + 0.4)
Find the following squares by suing the identities.
`(2/3 m + 3/4 n)^2`
Simplify (4m + 5n)2 + (5m + 4n)2
Expand (5a + 6b)2
Expand: (10 + y)2
Expand: `("p"/3 + "q"/4)^2`
Expand: (51)2
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
9x2 + 24x + 16
Factorise the following.
x2 + 15x + 26
If a2 + b2 = 74 and ab = 35, then find a + b.