Advertisements
Advertisements
प्रश्न
Factorize the following:
20a12b2 − 15a8b4
योग
उत्तर
The greatest common factor of the terms 20a12b2 and -15a8b4 of the expression 20a12b2 - 15a8b4 is 5a8b2.
20a12b2 = 5×4×a8×a4×b2 = 5a8×b2 × 4a4 and -15a8b4 = 5×-3×a8×b2×b2 = 5a8b2× -3b2
Hence, the expression 20a12b2 - 15a8b4 can be factorised as 5a8b2(4a4-3b2)
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Find the common factors of the terms.
2y, 22xy
Find the common factors of the terms.
16x3, −4x2, 32x
Factorise : 9x 2 + 3x - 8y - 64y2
Factorise : `1/4 ( a + b )^2 - 9/16 ( 2a - b )^2`
Factorise : 4a2 - 8ab
Factorise : 12abc - 6a2b2c2 + 3a3b3c3
Factorise : a2 - ab(1 - b) - b3
Factorise: a2 - 0·36 b2
Factorise the following by taking out the common factors:
(a - b)2 -2(a - b)
Factorise:
`"p"^2 + (1)/"p"^2 - 3`