हिंदी

Find All the Zeros of the Polynomial X4 + X3 − 34x2 − 4x + 120, If Two of Its Zeros Are 2 and −2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find all the zeros of the polynomial x4 + x3 − 34x2 − 4x + 120, if two of its zeros are 2 and −2.

योग

उत्तर

We know that if x = a is a zero of a polynomial, then x - a is a factor of f(x).

Since, 2 and -2 are zeros of f(x).

Therefore

(x + 2)(x - 2) = x2 - 22

= x2 - 4

x2 - 4 is a factor of f(x). Now, we divide x4 + x3 − 34x2 − 4x + 120 by g(x) = x2 - 4 to find the other zeros of f(x).

By using that division algorithm we have,

f(x) = g(x) x q(x) - r(x)

x4 + x3 − 34x2 − 4x + 120 = (x2 - 4)(x2 + x - 30) - 0

x4 + x3 − 34x2 − 4x + 120 = (x + 2)(x - 2)(x2 + 6x - 5x - 30)

x4 + x3 − 34x2 − 4x + 120 = (x + 2)(x - 2)(x(x + 6) - 5(x + 6))

x4 + x3 − 34x2 − 4x + 120 = (x + 2)(x - 2)(x + 6)
(x - 5)

Hence, the zeros of the given polynomial are -2, +2, -6 and 5.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Polynomials - Exercise 2.3 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 2 Polynomials
Exercise 2.3 | Q 9 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×