Advertisements
Advertisements
प्रश्न
Find `sin x/2, cos x/2 and tan x/2` of the following
`tan x = -4/3`, x in quadrant II
उत्तर
Here, x is in quadrant II
i.e., `pi/2 < x <pi`
⇒ `pi/4 < x/2 < pi/2`
Therefore, sin `x/2`, cos `x/2` and tan `x/2` are all positive.
It is given that tan x = `-4/3`
`sec^2 x = 1 + tan^2 x = 1 + (-4/3)^2 = 1 + 16/9 = 25/9`
∴ `cos^2 x = 9/25`
⇒ cos x = ± `3/5`
Since x is in quadrant 2, cosx is negative
∴ `cos x = (-3)/5`
Now, cos x = `2cos^2 x/2 - 1`
⇒ `(-3)/5 = 2 cos^2 x/2 - 1`
⇒ `2cos^2 x/2 = 2/5`
⇒ `cos^2 x/2 = 1/5`
⇒ `cos x/2 = 1/sqrt5`
`[∵ cos x/2 "is positive"]`
∴ `cos x/2 = sqrt5/5`
⇒ `sin^2 x/2 + cos^2 x/2 = 1`
⇒ `sin^2 x/2 + (1/sqrt5)^2 = 1`
⇒ `sin^2 x/2 = 1 - 1/5 = 4/5`
⇒ `sin x/2 = 2 /sqrt5`
`[∵ sin x/2 "is positive"`
∴ `sin x/2 = (2sqrt5)/5`
tan `x/2 = (sin x/2 (2)/(sqrt5))/(cos x/2 (1/sqrt5)) =2`
The corresponding values of `sin x/2, cos x/2 tan x/2 (2sqrt5)/5, sqrt5/5, and 2`