Advertisements
Advertisements
प्रश्न
Find the difference between the compound interest and simple interest. On a sum of Rs 50,000 at 10% per annum for 2 years.
उत्तर
Given:
P = Rs 50, 000
R = 10 % p. a.
n = 2 years
We know that amount A at the end of n years at the rate R % per annum when the interest is
compounded annually is given by A = P\[\left( 1 + \frac{R}{100} \right) . \]
\[ \therefore\text{ A = Rs }50, 000 \left( 1 + \frac{10}{100} \right)^2 \]
\[ =\text{ Rs }50, 000 \left( 1 . 1 \right)^2 \]
= Rs 60, 500
Also,
CI = A - P
= Rs 60, 500 - Rs 50, 000
= Rs 10, 500
We know that:
\[SI = \frac{PRT}{100}\]
\[ = \frac{50, 000 \times 10 \times 2}{100}\]
= Rs 10, 000
∴ Difference between CI and SI = Rs 10, 500 - Rs 10, 000
= Rs 500
APPEARS IN
संबंधित प्रश्न
Ramesh invests Rs. 12,800 for three years at the rate of 10% per annum compound interest. Find:
(i) the sum due to Ramesh at the end of the first year.
(ii) the interest he earns for the second year.
(iii) the total amount due to him at the end of the third year.
Find the sum, invested at 10% compounded annually, on which the interest for the third year exceeds the interest of the first year by Rs. 252.
A man borrows Rs.10,000 at 10% compound interest compounded yearly. At the end of each year, he pays back 20% of the amount for that year. How much money is left unpaid just after the second year ?
A sum of Rs. 8,000 is invested for 2 years at 10% per annum compound interest. Calculate:
(i) interest for the first year.
(ii) principal for the second year.
(iii) interest for the second year.
(iv) the final amount at the end of the second year
(v) compound interest earned in 2 years.
A man invests Rs. 9600 at 10% per annum compound interest for 3 years. Calculate :
(i) the interest for the first year.
(ii) the amount at the end of the first year.
(iii) the interest for the second year.
(iv) the interest for the third year. the interest for the first year.
Calculate the difference between the compound interest and the simple interest on ₹ 8,000 in three years and at 10% per annum.
The compound interest on ₹ 5000 at 12% p.a for 2 years, compounded annually is ___________
The time taken for ₹ 4400 to become ₹ 4851 at 10%, compounded half yearly is _______
The cost of a machine is ₹ 18000 and it depreciates at `16 2/3 %` annually. Its value after 2 years will be ___________
Suppose a certain sum doubles in 2 years at r % rate of simple interest per annum or at R% rate of interest per annum compounded annually. We have ______.