Advertisements
Advertisements
प्रश्न
Find the equation of the plane through the line of intersection of `vecr*(2hati-3hatj + 4hatk) = 1`and `vecr*(veci - hatj) + 4 =0`and perpendicular to the plane `vecr*(2hati - hatj + hatk) + 8 = 0`. Hence find whether the plane thus obtained contains the line x − 1 = 2y − 4 = 3z − 12.
उत्तर
The equation of the plane through the intersection of planes is
So, the vector normal to the plane and vector parallel to the line are perpendicular to each other.
Hence, the plane thus obtained contains the given line.
APPEARS IN
संबंधित प्रश्न
Write the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane `vec r.(hati+hatj+hatk)=2`
Find the vector equation of the plane passing through three points with position vectors ` hati+hatj-2hatk , 2hati-hatj+hatk and hati+2hatj+hatk` . Also find the coordinates of the point of intersection of this plane and the line `vecr=3hati-hatj-hatk lambda +(2hati-2hatj+hatk)`
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Find the equation of the plane which contains the line of intersection of the planes
`vecr.(hati-2hatj+3hatk)-4=0" and"`
`vecr.(-2hati+hatj+hatk)+5=0`
and whose intercept on x-axis is equal to that of on y-axis.
Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is `2hati-3hatj+6hatk`
Find the Cartesian equation of the following planes:
`vecr.[(s-2t)hati + (3 - t)hatj + (2s + t)hatk] = 15`
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
3y + 4z – 6 = 0
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
5y + 8 = 0
Find the vector and Cartesian equation of the planes that passes through the point (1, 4, 6) and the normal vector to the plane is `hati -2hatj + hatk`
Find the vector and Cartesian equations of the line passing through (1, 2, 3) and parallel to the planes \[\vec{r} \cdot \left( \hat{i} - \hat{j} + 2 \hat{k} \right) = 5 \text{ and } \vec{r} \cdot \left( 3 \hat{i} + \hat{j} + 2 \hat{k} \right) = 6\]
Find the vector and Cartesian forms of the equation of the plane passing through the point (1, 2, −4) and parallel to the lines \[\vec{r} = \left( \hat{i} + 2 \hat{j} - 4 \hat{k} \right) + \lambda\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right)\] and \[\vec{r} = \left( \hat{i} - 3 \hat{j} + 5 \hat{k} \right) + \mu\left( \hat{i} + \hat{j} - \hat{k} \right)\] Also, find the distance of the point (9, −8, −10) from the plane thus obtained.
Find the equation of the plane passing through the intersection of the planes `vec(r) .(hat(i) + hat(j) + hat(k)) = 1"and" vec(r) . (2 hat(i) + 3hat(j) - hat(k)) +4 = 0 `and parallel to x-axis. Hence, find the distance of the plane from x-axis.
Find the vector and cartesian equation of the plane passing through the point (2, 5, - 3), (-2, -3, 5) and (5, 3, -3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (-1, -3, -1).
Vector equation of a line which passes through a point (3, 4, 5) and parallels to the vector `2hati + 2hatj - 3hatk`.
Find the vector and Cartesian equations of the plane passing through the points (2, 2 –1), (3, 4, 2) and (7, 0, 6). Also find the vector equation of a plane passing through (4, 3, 1) and parallel to the plane obtained above.
Find the vector equation of the plane that contains the lines `vecr = (hat"i" + hat"j") + λ (hat"i" + 2hat"j" - hat"k")` and the point (–1, 3, –4). Also, find the length of the perpendicular drawn from the point (2, 1, 4) to the plane thus obtained.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.
The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vec"r" = 5hat"i" - 4hat"j" + 6hat"k" + lambda(3hat"i" + 7hat"j" + 2hat"k")`.
Find the vector and the cartesian equations of the plane containing the point `hati + 2hatj - hatk` and parallel to the lines `vecr = (hati + 2hatj + 2hatk) + s(2hati - 3hatj + 2hatk)` and `vecr = (3hati + hatj - 2hatk) + t(hati - 3hatj + hatk)`